224 research outputs found

    The Euler spiral of rat whiskers

    Get PDF
    This paper reports on an analytical study of the intrinsic shapes of 523 whiskers from 15 rats. We show that the variety of whiskers on a rat’s cheek, each of which has different lengths and shapes, can be described by a simple mathematical equation such that each whisker is represented as an interval on the Euler spiral. When all the representative curves of mystacial vibrissae for a single rat are assembled together, they span an interval extending from one coiled domain of the Euler spiral to the other. We additionally find that each whisker makes nearly the same angle of 47∘ with the normal to the spherical virtual surface formed by the tips of whiskers, which constitutes the rat’s tactile sensory shroud or “search space.” The implications of the linear curvature model for gaining insight into relationships between growth, form, and function are discussed

    Methods to estimate aboveground wood productivity from long-term forest inventory plots

    Get PDF
    Forest inventory plots are widely used to estimate biomass carbon storage and its change over time. While there has been much debate and exploration of the analytical methods for calculating biomass, the methods used to determine rates of wood production have not been evaluated to the same degree. This affects assessment of ecosystem fluxes and may have wider implications if inventory data are used to parameterise biospheric models, or scaled to large areas in assessments of carbon sequestration. Here we use a dataset of 35 long-term Amazonian forest inventory plots to test different methods of calculating wood production rates. These address potential biases associated with three issues that routinely impact the interpretation of tree measurement data: (1) changes in the point of measurement (POM) of stem diameter as trees grow over time; (2) unequal length of time between censuses; and (3) the treatment of trees that pass the minimum diameter threshold (“recruits”). We derive corrections that control for changing POM height, that account for the unobserved growth of trees that die within census intervals, and that explore different assumptions regarding the growth of recruits during the previous census interval. For our dataset we find that annual aboveground coarse wood production (AGWP; in Mg ha−1 year−1 of dry matter) is underestimated on average by 9.2% if corrections are not made to control for changes in POM height. Failure to control for the length of sampling intervals results in a mean underestimation of 2.7% in annual AGWP in our plots for a mean interval length of 3.6 years. Different methods for treating recruits result in mean differences of up to 8.1% in AGWP. In general, the greater the length of time a plot is sampled for and the greater the time elapsed between censuses, the greater the tendency to underestimate wood production. We recommend that POM changes, census interval length, and the contribution of recruits should all be accounted for when estimating productivity rates, and suggest methods for doing this.European UnionUK Natural Environment Research CouncilGordon and Betty Moore FoundationCASE sponsorship from UNEP-WCMCRoyal Society University Research FellowshipERC Advanced Grant “Tropical Forests in the Changing Earth System”Royal Society Wolfson Research Merit Awar

    The CHIP-Family study to improve the psychosocial wellbeing of young children with congenital heart disease and their families: design of a randomized controlled trial

    Get PDF
    Background: Children with congenital heart disease (CHD) are at increased risk for behavioral, emotional, and cognitive problems. They often have reduced exercise capacity and participate less in sports, which is associated with a lower quality of life. Starting school may present more challenges for children with CHD and their families than for families with healthy children. Moreover, parents of children with CHD are at risk for psychosocial problems. Therefore, a family-centered psychosocial intervention for children with CHD when starting school is needed. Until now, the 'Congenital Heart Disease Intervention Program (CHIP) - School' is the only evidence-based intervention in this field. However, CHIP-School targeted parents only and resulted in non-significant, though positive, effects as to child psychosocial wellbeing. Hence, we expanded CHIP by adding a specific child module and including siblings, creating the CHIP-Family intervention. The CHIP-Family study aims to (1) test the effects of CHIP-Family on parental mental health and psychosocial wellbeing of CHD-children and to (2) identify baseline psychosocial and medical predictors for the e

    Specific bottom–up effects of arbuscular mycorrhizal fungi across a plant–herbivore–parasitoid system

    Get PDF
    The majority of plants are involved in symbioses with arbuscular mycorrhizal fungi (AMF), and these associations are known to have a strong influence on the performance of both plants and insect herbivores. Little is known about the impact of AMF on complex trophic chains, although such effects are conceivable. In a greenhouse study we examined the effects of two AMF species, Glomus intraradices and G. mosseae on trophic interactions between the grass Phleum pratense, the aphid Rhopalosiphum padi, and the parasitic wasp Aphidius rhopalosiphi. Inoculation with AMF in our study system generally enhanced plant biomass (+5.2%) and decreased aphid population growth (−47%), but there were no fungal species-specific effects. When plants were infested with G. intraradices, the rate of parasitism in aphids increased by 140% relative to the G. mosseae and control treatment. When plants were associated with AMF, the developmental time of the parasitoids decreased by 4.3% and weight at eclosion increased by 23.8%. There were no clear effects of AMF on the concentration of nitrogen and phosphorus in plant foliage. Our study demonstrates that the effects of AMF go beyond a simple amelioration of the plants’ nutritional status and involve rather more complex species-specific cascading effects of AMF in the food chain that have a strong impact not only on the performance of plants but also on higher trophic levels, such as herbivores and parasitoids

    Estimating trace deposition time with circadian biomarkers: a prospective and versatile tool for crime scene reconstruction

    Get PDF
    Linking biological samples found at a crime scene with the actual crime event represents the most important aspect of forensic investigation, together with the identification of the sample donor. While DNA profiling is well established for donor identification, no reliable methods exist for timing forensic samples. Here, we provide for the first time a biochemical approach for determining deposition time of human traces. Using commercial enzyme-linked immunosorbent assays we showed that the characteristic 24-h profiles of two circadian hormones, melatonin (concentration peak at late night) and cortisol (peak in the morning) can be reproduced from small samples of whole blood and saliva. We further demonstrated by analyzing small stains dried and stored up to 4 weeks the in vitro stability of melatonin, whereas for cortisol a statistically significant decay with storage time was observed, although the hormone was still reliably detectable in 4-week-old samples. Finally, we showed that the total protein concentration, also assessed using a commercial assay, can be used for normalization of hormone signals in blood, but less so in saliva. Our data thus demonstrate that estimating normalized concentrations of melatonin and cortisol represents a prospective approach for determining deposition time of biological trace samples, at least from blood, with promising expectations for forensic applications. In the broader context, our study opens up a new field of circadian biomarkers for deposition timing of forensic traces; future studies using other circadian biomarkers may reveal if the time range offered by the two hormones studied here can be specified more exactly

    Fertilization with beneficial microorganisms decreases tomato defenses against insect pests

    Get PDF
    International audienceThe adverse effects of chemical fertilizers on agricultural fields and the environment are compelling society to move toward more sustainable farming techniques. “Effective microorganisms” is a beneficial microbial mixture that has been developed to improve soil quality and crop yield while simultaneously dramatically reducing organic chemical application. Additional indirect benefits of beneficial microorganisms application may include increased plant resistance to herbivore attack, though this has never been tested till now. Tomato plants were grown in controlled greenhouse conditions in a full-factorial design with beneficial microorganisms inoculation and commercial chemical fertilizer application as main factors. We measured plant yield and growth parameters, as well as resistance against the generalist pest Spodoptera littoralis moth larval attack. Additionally, we measured plant defensive chemistry to underpin resistance mechanisms. Overall, we found that, comparable to chemical fertilizer, beneficial microorganisms increased plant growth fruit production by 35 and 61 %, respectively. Contrary to expectations, plants inoculated with beneficial microorganisms sustained 25 % higher insect survival and larvae were in average 41 % heavier than on unfertilized plants. We explain these results by showing that beneficial microorganism-inoculated plants were impaired in the induction of the toxic glycoalkaloid molecule tomatine and the defense-related phytohormone jasmonic acid after herbivore attack. For the first time, we therefore show that biofertilizer application might endure unintended, pest-mediated negative effects, and we thus suggest that biofertilizer companies should incorporate protection attributes in their studies prior to commercialization

    Dynamic Replacement of Histone H3 Variants Reprograms Epigenetic Marks in Early Mouse Embryos

    Get PDF
    Upon fertilization, reprogramming of gene expression is required for embryo development. This step is marked by DNA demethylation and changes in histone variant composition. However, little is known about the molecular mechanisms causing these changes and their impact on histone modifications. We examined the global deposition of the DNA replication-dependent histone H3.1 and H3.2 variants and the DNA replication-independent H3.3 variant after fertilization in mice. We showed that H3.3, a euchromatic marker of gene activity, transiently disappears from the maternal genome, suggesting erasure of the oocyte-specific modifications carried by H3.3. After fertilization, H3.2 is incorporated into the transcriptionally silent heterochromatin, whereas H3.1 and H3.3 occupy unusual heterochromatic and euchromatin locations, respectively. After the two-cell stage, H3.1 and H3.3 variants resume their usual respective locations on heterochromatin and euchromatin. Preventing the incorporation of H3.1 and H3.2 by knockdown of the histone chaperone CAF-1 induces a reciprocal increase in H3.3 deposition and impairs heterochromatin formation. We propose that the deposition of different H3 variants influences the functional organization of chromatin. Taken together, these findings suggest that dynamic changes in the deposition of H3 variants are critical for chromatin reorganization during epigenetic reprogramming

    Similarity of Traveling-Wave Delays in the Hearing Organs of Humans and Other Tetrapods

    Get PDF
    Transduction of sound in mammalian ears is mediated by basilar-membrane waves exhibiting delays that increase systematically with distance from the cochlear base. Most contemporary accounts of such “traveling-wave” delays in humans have ignored postmortem basilar-membrane measurements in favor of indirect in vivo estimates derived from brainstem-evoked responses, compound action potentials, and otoacoustic emissions. Here, we show that those indirect delay estimates are either flawed or inadequately calibrated. In particular, we argue against assertions based on indirect estimates that basilar-membrane delays are much longer in humans than in experimental animals. We also estimate in vivo basilar-membrane delays in humans by correcting postmortem measurements in humans according to the effects of death on basilar-membrane vibrations in other mammalian species. The estimated in vivo basilar-membrane delays in humans are similar to delays in the hearing organs of other tetrapods, including those in which basilar membranes do not sustain traveling waves or that lack basilar membranes altogether
    corecore