394 research outputs found
Physiological Correlates of Endurance Time Variability during Constant-Workrate Cycling Exercise in Patients with COPD
RATIONALE: The endurance time (T(end)) during constant-workrate cycling exercise (CET) is highly variable in COPD. We investigated pulmonary and physiological variables that may contribute to these variations in T(end). METHODS: Ninety-two patients with COPD completed a CET performed at 80% of peak workrate capacity (W(peak)). Patients were divided into tertiles of T(end) [Group 1: <4 min; Group 2: 4-6 min; Group 3: >6 min]. Disease severity (FEV(1)), aerobic fitness (W(peak), peak oxygen consumption [VO2(peak)], ventilatory threshold [VO2(VT)]), quadriceps strength (MVC), symptom scores at the end of CET and exercise intensity during CET (heart rate at the end of CET to heart rate at peak incremental exercise ratio [HR(CET)/HR(peak)]) were analyzed as potential variables influencing T(end). RESULTS: W(peak), VO2(peak), VO2(VT), MVC, leg fatigue at end of CET, and HR(CET)/HR(peak) were lower in group 1 than in group 2 or 3 (p≤0.05). VO2(VT) and leg fatigue at end of CET independently predicted T(end) in multiple regression analysis (r = 0.50, p = 0.001). CONCLUSION: T(end) was independently related to the aerobic fitness and to tolerance to leg fatigue at the end of exercise. A large fraction of the variability in T(end) was not explained by the physiological parameters assessed in the present study. Individualization of exercise intensity during CET should help in reducing variations in T(end) among patients with COPD
MiR-17-92 cluster is associated with 13q gain and c-myc expression during colorectal adenoma to adenocarcinoma progression
Background:MicroRNAs are small non-coding RNA molecules, which regulate central mechanisms of tumorigenesis. In colorectal tumours, the combination of gain of 8q and 13q is one of the major factors associated with colorectal adenoma to adenocarcinoma progression. Functional studies on the miR-17-92 cluster localised on 13q31 have shown that its transcription is activated by c-myc, located on 8q, and that it has oncogenic activities. We investigated the contribution of the miR-17-92 cluster during colorectal adenoma to adenocarcinoma progression.Methods:Expression levels of the miR-17-92 cluster were determined in 55 colorectal tumours and in 10 controls by real-time RT-PCR. Messenger RNA c-myc expression was also determined by real-time RT-PCR in 48 tumours with array comparative genomic hybridisation (aCGH) data available.Results:From the six members of the miR-17-92 cluster, all except miR-18a, showed significant increased expression in colorectal tumours with miR-17-92 locus gain compared with tumours without miR-17-92 locus gain. Unsupervised cluster analysis clustered the tumours based on the presence of miR-17-92 locus gain. Significant correlation between the expression of c-myc and the six miRNAs was also found.Conclusion:Increased expression of miR-17-92 cluster during colorectal adenoma to adenocarcinoma progression is associated to DNA copy number gain of miR17-92 locus on 13q31 and c-myc expression. © 2009 Cancer Research UK
Design and feasibility testing of a novel group intervention for young women who binge drink in groups
BackgroundYoung women frequently drink alcohol in groups and binge drinking within these natural drinking groups is common. This study describes the design of a theoretically and empirically based group intervention to reduce binge drinking among young women. It also evaluates their engagement with the intervention and the acceptability of the study methods.MethodsFriendship groups of women aged 18–35 years, who had two or more episodes of binge drinking (>6 UK units on one occasion; 48g of alcohol) in the previous 30 days, were recruited from the community. A face-to-face group intervention, based on the Health Action Process Approach, was delivered over three sessions. Components of the intervention were woven around fun activities, such as making alcohol free cocktails. Women were followed up four months after the intervention was delivered. Results The target of 24 groups (comprising 97 women) was recruited. The common pattern of drinking was infrequent, heavy drinking (mean consumption on the heaviest drinking day was UK 18.1 units). Process evaluation revealed that the intervention was delivered with high fidelity and acceptability of the study methods was high. The women engaged positively with intervention components and made group decisions about cutting down. Twenty two groups set goals to reduce their drinking, and these were translated into action plans. Retention of individuals at follow up was 87%.ConclusionsThis study successfully recruited groups of young women whose patterns of drinking place them at high risk of acute harm. This novel approach to delivering an alcohol intervention has potential to reduce binge drinking among young women. The high levels of engagement with key steps in the behavior change process suggests that the group intervention should be tested in a full randomised controlled trial
MicroRNAs in cell proliferation, cell death, and tumorigenesis
MicroRNAs (miRNAs) are a recently discovered class of ∼18–24 nucleotide RNA molecules that negatively regulate target mRNAs. All studied multicellular eukaryotes utilise miRNAs to regulate basic cellular functions including proliferation, differentiation, and death. It is now apparent that abnormal miRNA expression is a common feature of human malignancies. In this review, we will discuss how miRNAs influence tumorigenesis by acting as oncogenes and tumour suppressors
Reconstructing the three-dimensional GABAergic microcircuit of the striatum
A system's wiring constrains its dynamics, yet modelling of neural structures often overlooks the specific networks formed by their neurons. We developed an approach for constructing anatomically realistic networks and reconstructed the GABAergic microcircuit formed by the medium spiny neurons (MSNs) and fast-spiking interneurons (FSIs) of the adult rat striatum. We grew dendrite and axon models for these neurons and extracted probabilities for the presence of these neurites as a function of distance from the soma. From these, we found the probabilities of intersection between the neurites of two neurons given their inter-somatic distance, and used these to construct three-dimensional striatal networks. The MSN dendrite models predicted that half of all dendritic spines are within 100 mu m of the soma. The constructed networks predict distributions of gap junctions between FSI dendrites, synaptic contacts between MSNs, and synaptic inputs from FSIs to MSNs that are consistent with current estimates. The models predict that to achieve this, FSIs should be at most 1% of the striatal population. They also show that the striatum is sparsely connected: FSI-MSN and MSN-MSN contacts respectively form 7% and 1.7% of all possible connections. The models predict two striking network properties: the dominant GABAergic input to a MSN arises from neurons with somas at the edge of its dendritic field; and FSIs are interconnected on two different spatial scales: locally by gap junctions and distally by synapses. We show that both properties influence striatal dynamics: the most potent inhibition of a MSN arises from a region of striatum at the edge of its dendritic field; and the combination of local gap junction and distal synaptic networks between FSIs sets a robust input-output regime for the MSN population. Our models thus intimately link striatal micro-anatomy to its dynamics, providing a biologically grounded platform for further study
MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer
Background:MicroRNAs (miRNAs) are 19-25-nucleotides regulatory non-protein-coding RNA molecules that regulate the expressions of a wide variety of genes, including some involved in cancer development. In this study, we investigated the possible role of miR-143 in colorectal cancer (CRC).Methods:Expression levels of human mature miRNAs were examined using real-time PCR-based expression arrays on paired colorectal carcinomas and adjacent non-cancerous colonic tissues. The downregulation of miR-143 was further evaluated in colon cancer cell lines and in paired CRC and adjacent non-cancerous colonic tissues by qRT-PCR. Potential targets of miR-143 were defined. The functional effect of miR-143 and its targets was investigated in human colon cancer cell lines to confirm miRNA-target association.Results:Both real-time PCR-based expression arrays and qRT-PCR showed that miR-143 was frequently downregulated in 87.5% (35 of 40) of colorectal carcinoma tissues compared with their adjacent non-cancerous colonic tissues. Using in silico predictions, DNA methyltranferase 3A (DNMT3A) was defined as a potential target of miR-143. Restoration of the miR-143 expression in colon cell lines decreased tumour cell growth and soft-agar colony formation, and downregulated the DNMT3A expression in both mRNA and protein levels. DNMT3A was shown to be a direct target of miR-143 by luciferase reporter assay. Furthermore, the miR-143 expression was observed to be inversely correlated with DNMT3A mRNA and protein expression in CRC tissues.Conclusion:Our findings suggest that miR-143 regulates DNMT3A in CRC. These findings elucidated a tumour-suppressive role of miR-143 in the epigenetic aberration of CRC, providing a potential development of miRNA-based targeted approaches for CRC therapy. © 2009 Cancer Research UK.published_or_final_versio
Mitochondrial Lactate Dehydrogenase Is Involved in Oxidative-Energy Metabolism in Human Astrocytoma Cells (CCF-STTG1)
Lactate has long been regarded as an end product of anaerobic energy production and its fate in cerebral metabolism has not been precisely delineated. In this report, we demonstrate, for the first time, the ability of a human astrocytic cell line (CCF-STTG1) to consume lactate and to generate ATP via oxidative phosphorylation. 13C-NMR and HPLC analyses aided in the identification of tricarboxylic acid (TCA) cyle metabolites and ATP in the astrocytic mitochondria incubated with lactate. Oxamate, an inhibitor of lactate dehydrogenase (LDH), abolished mitochondrial lactate consumption. Electrophoretic and fluorescence microscopic analyses helped localize LDH in the mitochondria. Taken together, this study implicates lactate as an important contributor to ATP metabolism in the brain, a finding that may significantly change our notion of how this important organ manipulates its energy budget
Mechanisms and role of microRNA deregulation in cancer onset and progression
MicroRNAs are key regulators of various fundamental biological processes and, although representing only a small portion of the genome, they regulate a much larger population of target genes. Mature microRNAs (miRNAs) are single-stranded RNA molecules of 20–23 nucleotide (nt) length that control gene expression in many cellular processes. These molecules typically reduce the stability of mRNAs, including those of genes that mediate processes in tumorigenesis, such as inflammation, cell cycle regulation, stress response, differentiation, apoptosis and invasion. MicroRNA targeting is mostly achieved through specific base-pairing interactions between the 5′ end (‘seed’ region) of the miRNA and sites within coding and untranslated regions (UTRs) of mRNAs; target sites in the 3′ UTR diminish mRNA stability. Since miRNAs frequently target hundreds of mRNAs, miRNA regulatory pathways are complex. Calin and Croce were the first to demonstrate a connection between microRNAs and increased risk of developing cancer, and meanwhile the role of microRNAs in carcinogenesis has definitively been evidenced. It needs to be considered that the complex mechanism of gene regulation by microRNAs is profoundly influenced by variation in gene sequence (polymorphisms) of the target sites. Thus, individual variability could cause patients to present differential risks regarding several diseases. Aiming to provide a critical overview of miRNA dysregulation in cancer, this article reviews the growing number of studies that have shown the importance of these small molecules and how these microRNAs can affect or be affected by genetic and epigenetic mechanisms
Classification of heterogeneous microarray data by maximum entropy kernel
<p>Abstract</p> <p>Background</p> <p>There is a large amount of microarray data accumulating in public databases, providing various data waiting to be analyzed jointly. Powerful kernel-based methods are commonly used in microarray analyses with support vector machines (SVMs) to approach a wide range of classification problems. However, the standard vectorial data kernel family (linear, RBF, etc.) that takes vectorial data as input, often fails in prediction if the data come from different platforms or laboratories, due to the low gene overlaps or consistencies between the different datasets.</p> <p>Results</p> <p>We introduce a new type of kernel called maximum entropy (ME) kernel, which has no pre-defined function but is generated by kernel entropy maximization with sample distance matrices as constraints, into the field of SVM classification of microarray data. We assessed the performance of the ME kernel with three different data: heterogeneous kidney carcinoma, noise-introduced leukemia, and heterogeneous oral cavity carcinoma metastasis data. The results clearly show that the ME kernel is very robust for heterogeneous data containing missing values and high-noise, and gives higher prediction accuracies than the standard kernels, namely, linear, polynomial and RBF.</p> <p>Conclusion</p> <p>The results demonstrate its utility in effectively analyzing promiscuous microarray data of rare specimens, e.g., minor diseases or species, that present difficulty in compiling homogeneous data in a single laboratory.</p
- …