29 research outputs found
MOND and Cosmology
I review various ideas on MOND cosmology and structure formation beginning
with non-relativistic models in analogy with Newtonian cosmology. I discuss
relativistic MOND cosmology in the context of Bekenstein's theory and propose
an alternative biscalar effective theory of MOND in which the acceleration
parameter is identified with the cosmic time derivative of a matter coupling
scalar field. Cosmic CDM appears in this theory as scalar field oscillations of
the auxiliary "coupling strength" field.Comment: 8 pages, LaTeX, 2 figures, to appear in proceedings of IAP05 in
Paris: Mass Profiles and Shapes of Cosmological Structures, G. Mamon, F.
Combes, C. Deffayet and B. Fort (eds), (EDP-Sciences 2005
Gravitational Lensing & Stellar Dynamics
Strong gravitational lensing and stellar dynamics provide two complementary
and orthogonal constraints on the density profiles of galaxies. Based on
spherically symmetric, scale-free, mass models, it is shown that the
combination of both techniques is powerful in breaking the mass-sheet and
mass-anisotropy degeneracies. Second, observational results are presented from
the Lenses Structure & Dynamics (LSD) Survey and the Sloan Lens ACS (SLACS)
Survey collaborations to illustrate this new methodology in constraining the
dark and stellar density profiles, and mass structure, of early-type galaxies
to redshifts of unity.Comment: 6 pages, 2 figures; Invited contribution in the Proceedings of XXIst
IAP Colloquium, "Mass Profiles & Shapes of Cosmological Structures" (Paris,
4-9 July 2005), eds G. A. Mamon, F. Combes, C. Deffayet, B. Fort (Paris: EDP
Sciences
Large-Scale Structures Behind the Milky Way from Near-IR Surveys
About 25% of the optical extragalactic sky is obscured by the dust and stars
of our Milky Way. Dynamically important structures might still lie hidden in
this zone. Various approaches are presently being employed to uncover the
galaxy distribution in the Zone of Avoidance (ZOA) but all suffer from
(different) limitations and selection effects.
We investigated the potential of using the DENIS NIR survey for studies of
galaxies behind the obscuration layer of our Milky Way and for mapping the
Galactic extinction. As a pilot study, we recovered DENIS I, J and K band
images of heavily obscured but optically still visible galaxies. We determined
the I, J and K band luminosity functions of galaxies on three DENIS strips that
cross the center of the nearby, low-latitude, rich cluster Abell 3627. The
extinction-corrected I-J and J-K colours of these cluster galaxies compare well
with that of an unobscured cluster. We searched for and identified galaxies at
latitudes where the Milky Way remains fully opaque (|b|
4-5mag) - in a systematic search as well as around positions of galaxies
detected with the blind HI survey of the ZOA currently conducted with the
Multibeam Receiver of the Parkes Radiotelescope.Comment: 12 pages, including 5 PS figures, LaTeX, uses crckapb.sty and
epsf.tex. Better resolved figures available upon request. To appear in
proceedings of the 3rd Euroconference (Meudon, France, June 1997) on ``The
Impact of Near IR Surveys'', Kluwer 199
Cosmic CARNage I: on the calibration of galaxy formation models
We present a comparison of nine galaxy formation models, eight semi-analytical, and one halo occupation distribution model, run on the same underlying cold dark matter simulation (cosmological box of comoving width 125h−1 Mpc, with a dark-matter particle mass of 1.24 × 109h−1M⊙) and the same merger trees. While their free parameters have been calibrated to the same observational data sets using two approaches, they nevertheless retain some ‘memory’ of any previous calibration that served as the starting point (especially for the manually tuned models). For the first calibration, models reproduce the observed z = 0 galaxy stellar mass function (SMF) within 3σ. The second calibration extended the observational data to include the z = 2 SMF alongside the z ∼ 0 star formation rate function, cold gas mass, and the black hole–bulge mass relation. Encapsulating the observed evolution of the SMF from z = 2 to 0 is found to be very hard within the context of the physics currently included in the models. We finally use our calibrated models to study the evolution of the stellar-to-halo mass (SHM) ratio. For all models, we find that the peak value of the SHM relation decreases with redshift. However, the trends seen for the evolution of the peak position as well as the mean scatter in the SHM relation are rather weak and strongly model dependent. Both the calibration data sets and model results are publicly available
A review of elliptical and disc galaxy structure, and modern scaling laws
A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their
models to describe the radial distribution of stars in `nebulae'. This article
reviews the progress since then, providing both an historical perspective and a
contemporary review of the stellar structure of bulges, discs and elliptical
galaxies. The quantification of galaxy nuclei, such as central mass deficits
and excess nuclear light, plus the structure of dark matter halos and cD galaxy
envelopes, are discussed. Issues pertaining to spiral galaxies including dust,
bulge-to-disc ratios, bulgeless galaxies, bars and the identification of
pseudobulges are also reviewed. An array of modern scaling relations involving
sizes, luminosities, surface brightnesses and stellar concentrations are
presented, many of which are shown to be curved. These 'redshift zero'
relations not only quantify the behavior and nature of galaxies in the Universe
today, but are the modern benchmark for evolutionary studies of galaxies,
whether based on observations, N-body-simulations or semi-analytical modelling.
For example, it is shown that some of the recently discovered compact
elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to
appear in "Planets, Stars and Stellar
Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references
incl. many somewhat forgotten, pioneer papers. Original submission to
Springer: 07-June-201
nIFTy Cosmology: Comparison of Galaxy Formation Models
We present a comparison of 14 galaxy formation models: 12 different semi-analytical models and 2 halo-occupation distribution models for galaxy formation based upon the same cosmological simulation and merger tree information derived from it. The participating codes have proven to be very successful in their own right but they have all been calibrated independently using various observational data sets, stellar models, and merger trees. In this paper we apply them without recalibration and this leads to a wide variety of predictions for the stellar mass function, specific star formation rates, stellar-to- halo mass ratios, and the abundance of orphan galaxies. The scatter is much larger than seen in previous comparison studies primarily because the codes have been used outside of their native environment within which they are well tested and calibrated. The purpose of the `nIFTy comparison of galaxy formation models' is to bring together as many different galaxy formation modellers as possible and to investigate a common approach to model calibration. This paper provides a unified description for all participating models and presents the initial, uncalibrated comparison as a baseline for our future studies where we will develop a common calibration framework and address the extent to which that reduces the scatter in the model predictions seen here
Breaking beta: A comparison of mass modelling methods for spherical systems
We apply four different mass modelling methods to a suite of publicly
available mock data for spherical stellar systems. We focus on the recovery of
the density and velocity anisotropy as a function of radius, using either
line-of-sight velocity data only, or adding proper motion data. All methods
perform well on isotropic and tangentially anisotropic mock data, recovering
the density and velocity anisotropy within their 95% confidence intervals over
the radial range 0.25 < R/Rhalf < 4, where Rhalf is the half light radius.
However, radially-anisotropic mocks are more challenging. For line-of-sight
data alone, only methods that use information about the shape of the velocity
distribution function are able to break the degeneracy between the density
profile and the velocity anisotropy to obtain an unbiased estimate of both.
This shape information can be obtained through directly fitting a global phase
space distribution function, by using higher order 'Virial Shape Parameters',
or by assuming a Gaussian velocity distribution function locally, but
projecting it self-consistently along the line of sight. Including proper
motion data yields further improvements, and in this case, all methods give a
good recovery of both the radial density and velocity anisotropy profiles
CODEX: Role of velocity substructure in the scaling relations of galaxy clusters
Context. The use of galaxy clusters as cosmological probes relies on a detailed understanding of their properties. They define cluster selection and ranking linked to a cosmologically significant cluster mass function. Previous studies have employed small samples of clusters, concentrating on achieving the first calibrations of cluster properties with mass, while the diversity of cluster properties has been revealed via detailed studies. Aims. The large spectroscopic follow-up on the CODEX cluster sample with SDSS and NOT enables a detailed study of hundreds of clusters, lifting the limitations of previous samples. We aim to update the spectroscopic cluster identification of CODEX by running the spectroscopic group finder on the follow-up spectroscopy results and connecting the dynamical state of clusters to their scaling relations. Methods. We implemented a reproducible spectroscopic membership determination and cleaning procedures, based on the redMaPPer membership, running the spectroscopic group finder on the follow-up spectroscopy results and cleaning the membership for spectroscopic outliers. We applied the Anderson-Darling test for velocity substructure and analysed its influence on the scaling relations. We also tested the effect of the X-ray-to-optical centre offset on the scaling relations. Results. We report on the scaling relations between richness, X-ray luminosity, and velocity dispersion for a complete sample of clusters with at least 15 members. Clusters with velocity substructure exhibit enhanced velocity dispersion for a given richness and are characterized by 2.5 times larger scatter. Clusters that have a strong offset in X-ray-to-optical centres have comparable scaling relations as clusters with substructure. We demonstrate that there is a consistency in the parameters of the scaling relations for the low- and high-richness galaxy clusters. Splitting the clusters by redshift, we note a decrease in scatter with redshift in all scaling relations. We localize the redshift range where a high scatter is observed to z < 0.15, which is in agreement with the literature results on the scatter. We note that the increase in scatter for both high- and low-luminosity clusters is z < 0.15, suggesting that both cooling and the resulting active galactic nucleus feedback are at the root of this scatter
Euclid preparation: LVIII. Detecting extragalactic globular clusters in the Euclid survey
\ua9 The Authors 2025.Extragalactic globular clusters (EGCs) are an abundant and powerful tracer of galaxy dynamics and formation, and their own formation and evolution is also a matter of extensive debate. The compact nature of globular clusters means that they are hard to spatially resolve and thus study outside the Local Group. In this work we have examined how well EGCs will be detectable in images from the Euclid telescope, using both simulated pre-launch images and the first early-release observations of the Fornax galaxy cluster. The Euclid Wide Survey will provide high-spatial resolution VIS imaging in the broad IE band as well as near-infrared photometry (YE, JE, and HE). We estimate that the 24 719 known galaxies within 100 Mpc in the footprint of the Euclid survey host around 830 000 EGCs of which about 350 000 are within the survey\u27s detection limits. For about half of these EGCs, three infrared colours will be available as well. For any galaxy within 50 Mpc the brighter half of its GC luminosity function will be detectable by the Euclid Wide Survey. The detectability of EGCs is mainly driven by the residual surface brightness of their host galaxy. We find that an automated machine-learning EGC-classification method based on real Euclid data of the Fornax galaxy cluster provides an efficient method to generate high purity and high completeness GC candidate catalogues. We confirm that EGCs are spatially resolved compared to pure point sources in VIS images of Fornax. Our analysis of both simulated and first on-sky data show that Euclid will increase the number of GCs accessible with high-resolution imaging substantially compared to previous surveys, and will permit the study of GCs in the outskirts of their hosts. Euclid is unique in enabling systematic studies of EGCs in a spatially unbiased and homogeneous manner and is primed to improve our understanding of many understudied aspects of GC astrophysics
Dark Matter in the Milky Way's Dwarf Spheroidal Satellites
The Milky Way's dwarf spheroidal satellites include the nearest, smallest and
least luminous galaxies known. They also exhibit the largest discrepancies
between dynamical and luminous masses. This article reviews the development of
empirical constraints on the structure and kinematics of dSph stellar
populations and discusses how this phenomenology translates into constraints on
the amount and distribution of dark matter within dSphs. Some implications for
cosmology and the particle nature of dark matter are discussed, and some
topics/questions for future study are identified.Comment: A version with full-resolution figures is available at
http://www.cfa.harvard.edu/~mwalker/mwdsph_review.pdf; 70 pages, 22 figures;
invited review article to be published in Vol. 5 of the book "Planets, Stars,
and Stellar Systems", published by Springe
