86 research outputs found
Life Course Socioeconomic Position and Incidence of Diabetes Mellitus Among Blacks and Whites: The Alameda County Study, 1965-1999
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65009/1/Kaplan_Life Course Socioeconomic Position and Incidence of Diabetes_2009.pd
Catalytic Function of PLA2G6 Is Impaired by Mutations Associated with Infantile Neuroaxonal Dystrophy but Not Dystonia-Parkinsonism
Mutations in the PLA2G6 gene have been identified in autosomal recessive neurodegenerative diseases classified as infantile neuroaxonal dystrophy (INAD), neurodegeneration with brain iron accumulation (NBIA), and dystonia-parkinsonism. These clinical syndromes display two significantly different disease phenotypes. NBIA and INAD are very similar, involving widespread neurodegeneration that begins within the first 1-2 years of life. In contrast, patients with dystonia-parkinsonism present with a parkinsonian movement disorder beginning at 15 to 30 years of age. The PLA2G6 gene encodes the PLA2G6 enzyme, also known as group VIA calcium-independent phospholipase A(2), which has previously been shown to hydrolyze the sn-2 acyl chain of phospholipids, generating free fatty acids and lysophospholipids.We produced purified recombinant wildtype (WT) and mutant human PLA2G6 proteins and examined their catalytic function using in vitro assays with radiolabeled lipid substrates. We find that human PLA2G6 enzyme hydrolyzes both phospholipids and lysophospholipids, releasing free fatty acids. Mutations associated with different disease phenotypes have different effects on catalytic activity. Mutations associated with INAD/NBIA cause loss of enzyme activity, with mutant proteins exhibiting less than 20% of the specific activity of WT protein in both lysophospholipase and phospholipase assays. In contrast, mutations associated with dystonia-parkinsonism do not impair catalytic activity, and two mutations produce a significant increase in specific activity for phospholipid but not lysophospholipid substrates.These results indicate that different alterations in PLA2G6 function produce the different disease phenotypes of NBIA/INAD and dystonia-parkinsonism. INAD/NBIA is caused by loss of the ability of PLA2G6 to catalyze fatty acid release from phospholipids, which predicts accumulation of PLA2G6 phospholipid substrates and provides a mechanistic explanation for the accumulation of membranes in neuroaxonal spheroids previously observed in histopathological studies of INAD/NBIA. In contrast, dystonia-parkinsonism mutations do not appear to directly impair catalytic function, but may modify substrate preferences or regulatory mechanisms for PLA2G6
Prognostic implications of negative dobutamine stress echocardiography in African Americans compared to Caucasians
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Cytogenetic analysis of HER1/EGFR, HER2, HER3 and HER4 in 278 breast cancer patients
INTRODUCTION: The HER (human EGFR related) family of receptor tyrosine kinases (HER1/EGFR (epidermal growth factor receptor)/c-erbB1, HER2/c-erbB2, HER3/c-erbB3 and HER4/c-erbB4) shares a high degree of structural and functional homology. It constitutes a complex network, coupling various extracellular ligands to intracellular signal transduction pathways resulting in receptor interaction and cross-activation. The most famous family member is HER2, which is a target in Herceptin therapy in metastatic status and also in adjuvant therapy of breast cancer in the event of dysregulation as a result of gene amplification and resulting protein overexpression. The HER2-related HER receptors have been shown to interact directly with HER2 receptors and thereby mutually affect their activity and subsequent malignant growth potential. However, the clinical outcome with regard to total HER receptor state remains largely unknown. METHODS: We investigated HER1-HER4, at both the DNA and the protein level, using fluorescence in situ hybridisation (FISH) probes targeted to all four receptor loci and also immunohistochemistry in tissue microarrays derived from 278 breast cancer patients. RESULTS: We retrospectively found HER3 gene amplification with a univariate negative impact on disease-free survival (hazard ratio 2.35, 95% confidence interval 1.08 to 5.11, p = 0.031), whereas HER4 amplification showed a positive trend in overall and disease-free survival. Protein expression revealed no additional information. CONCLUSION: Overall, the simultaneous quantification of HER3 and HER4 receptor genes by means of FISH might enable the rendering of a more precise stratification of breast cancer patients by providing additional prognostic information. The continuation of explorative and prospective studies on all HER receptors will be required for an evaluation of their potential use for specific therapeutic targeting with respect to individualised therapy
Discovery of blood transcriptomic markers for depression in animal models and pilot validation in subjects with early-onset major depression
Early-onset major depressive disorder (MDD) is a serious and prevalent psychiatric illness in adolescents and young adults. Current treatments are not optimally effective. Biological markers of early-onset MDD could increase diagnostic specificity, but no such biomarker exists. Our innovative approach to biomarker discovery for early-onset MDD combined results from genome-wide transcriptomic profiles in the blood of two animal models of depression, representing the genetic and the environmental, stress-related, etiology of MDD. We carried out unbiased analyses of this combined set of 26 candidate blood transcriptomic markers in a sample of 15–19-year-old subjects with MDD (N=14) and subjects with no disorder (ND, N=14). A panel of 11 blood markers differentiated participants with early-onset MDD from the ND group. Additionally, a separate but partially overlapping panel of 18 transcripts distinguished subjects with MDD with or without comorbid anxiety. Four transcripts, discovered from the chronic stress animal model, correlated with maltreatment scores in youths. These pilot data suggest that our approach can lead to clinically valid diagnostic panels of blood transcripts for early-onset MDD, which could reduce diagnostic heterogeneity in this population and has the potential to advance individualized treatment strategies
Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial
Aims The third Universal Definition of Myocardial Infarction (MI) Task Force classified MIs into five types: Type 1, spontaneous; Type 2, related to oxygen supply/demand imbalance; Type 3, fatal without ascertainment of cardiac biomarkers; Type 4, related to percutaneous coronary intervention; and Type 5, related to coronary artery bypass surgery. Low-density lipoprotein cholesterol (LDL-C) reduction with statins and proprotein convertase subtilisin–kexin Type 9 (PCSK9) inhibitors reduces risk of MI, but less is known about effects on types of MI. ODYSSEY OUTCOMES compared the PCSK9 inhibitor alirocumab with placebo in 18 924 patients with recent acute coronary syndrome (ACS) and elevated LDL-C (≥1.8 mmol/L) despite intensive statin therapy. In a pre-specified analysis, we assessed the effects of alirocumab on types of MI. Methods and results Median follow-up was 2.8 years. Myocardial infarction types were prospectively adjudicated and classified. Of 1860 total MIs, 1223 (65.8%) were adjudicated as Type 1, 386 (20.8%) as Type 2, and 244 (13.1%) as Type 4. Few events were Type 3 (n = 2) or Type 5 (n = 5). Alirocumab reduced first MIs [hazard ratio (HR) 0.85, 95% confidence interval (CI) 0.77–0.95; P = 0.003], with reductions in both Type 1 (HR 0.87, 95% CI 0.77–0.99; P = 0.032) and Type 2 (0.77, 0.61–0.97; P = 0.025), but not Type 4 MI. Conclusion After ACS, alirocumab added to intensive statin therapy favourably impacted on Type 1 and 2 MIs. The data indicate for the first time that a lipid-lowering therapy can attenuate the risk of Type 2 MI. Low-density lipoprotein cholesterol reduction below levels achievable with statins is an effective preventive strategy for both MI types.For complete list of authors see http://dx.doi.org/10.1093/eurheartj/ehz299</p
Effect of alirocumab on mortality after acute coronary syndromes. An analysis of the ODYSSEY OUTCOMES randomized clinical trial
Background: Previous trials of PCSK9 (proprotein convertase subtilisin-kexin type 9) inhibitors demonstrated reductions in major adverse cardiovascular events, but not death. We assessed the effects of alirocumab on death after index acute coronary syndrome. Methods: ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) was a double-blind, randomized comparison of alirocumab or placebo in 18 924 patients who had an ACS 1 to 12 months previously and elevated atherogenic lipoproteins despite intensive statin therapy. Alirocumab dose was blindly titrated to target achieved low-density lipoprotein cholesterol (LDL-C) between 25 and 50 mg/dL. We examined the effects of treatment on all-cause death and its components, cardiovascular and noncardiovascular death, with log-rank testing. Joint semiparametric models tested associations between nonfatal cardiovascular events and cardiovascular or noncardiovascular death. Results: Median follow-up was 2.8 years. Death occurred in 334 (3.5%) and 392 (4.1%) patients, respectively, in the alirocumab and placebo groups (hazard ratio [HR], 0.85; 95% CI, 0.73 to 0.98; P=0.03, nominal P value). This resulted from nonsignificantly fewer cardiovascular (240 [2.5%] vs 271 [2.9%]; HR, 0.88; 95% CI, 0.74 to 1.05; P=0.15) and noncardiovascular (94 [1.0%] vs 121 [1.3%]; HR, 0.77; 95% CI, 0.59 to 1.01; P=0.06) deaths with alirocumab. In a prespecified analysis of 8242 patients eligible for ≥3 years follow-up, alirocumab reduced death (HR, 0.78; 95% CI, 0.65 to 0.94; P=0.01). Patients with nonfatal cardiovascular events were at increased risk for cardiovascular and noncardiovascular deaths (P<0.0001 for the associations). Alirocumab reduced total nonfatal cardiovascular events (P<0.001) and thereby may have attenuated the number of cardiovascular and noncardiovascular deaths. A post hoc analysis found that, compared to patients with lower LDL-C, patients with baseline LDL-C ≥100 mg/dL (2.59 mmol/L) had a greater absolute risk of death and a larger mortality benefit from alirocumab (HR, 0.71; 95% CI, 0.56 to 0.90; Pinteraction=0.007). In the alirocumab group, all-cause death declined wit h achieved LDL-C at 4 months of treatment, to a level of approximately 30 mg/dL (adjusted P=0.017 for linear trend). Conclusions: Alirocumab added to intensive statin therapy has the potential to reduce death after acute coronary syndrome, particularly if treatment is maintained for ≥3 years, if baseline LDL-C is ≥100 mg/dL, or if achieved LDL-C is low. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01663402
- …