34 research outputs found

    Neural Network Parameterizations of Electromagnetic Nucleon Form Factors

    Full text link
    The electromagnetic nucleon form-factors data are studied with artificial feed forward neural networks. As a result the unbiased model-independent form-factor parametrizations are evaluated together with uncertainties. The Bayesian approach for the neural networks is adapted for chi2 error-like function and applied to the data analysis. The sequence of the feed forward neural networks with one hidden layer of units is considered. The given neural network represents a particular form-factor parametrization. The so-called evidence (the measure of how much the data favor given statistical model) is computed with the Bayesian framework and it is used to determine the best form factor parametrization.Comment: The revised version is divided into 4 sections. The discussion of the prior assumptions is added. The manuscript contains 4 new figures and 2 new tables (32 pages, 15 figures, 2 tables

    CRK9 contributes to regulation of mitosis and cytokinesis in the procyclic form of Trypanosoma brucei

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Trypanosoma brucei </it>cell cycle is regulated by combinations of cyclin/CRKs (cdc2 related kinases). Recently, two additional cyclins (CYC10, CYC11) and six new CRK (CRK7-12) homologues were identified in the <it>T. brucei </it>genome database <abbrgrp><abbr bid="B1">1</abbr><abbr bid="B2">2</abbr></abbrgrp>.</p> <p>Results</p> <p>Individual RNAi knockdowns of these new proteins in the procyclic form of <it>T. brucei </it>showed no apparent phenotype except for the CRK9 depletion, which enriched the cells in G2/M phase. But a similar CRK9 knockdown in the bloodstream form caused no apparent phenotype. CRK9 lacks the typical PSTAIRE motif for cyclin binding and the phenylalanine "gatekeeper" but binds to cyclin B2 <it>in vitro </it>and localizes to the nucleus in both forms of <it>T. brucei</it>. CRK9-depleted procyclic-form generated no detectable anucleate cells, suggesting an inhibition of cytokinesis by CRK9 depletion as well. The knockdown enriched cells with one nucleus, one kinetoplast and two closely associated basal bodies with an average distance of 1.08 mm in between, which was shorter than the control value of 1.36 μm, and the cells became morphologically deformed and rounded with time.</p> <p>Conclusion</p> <p>CRK9 may play a role in mediating the segregation between the two kinetoplast/basal body pairs prior to cytokinetic initiation. Since such a segregation over a relatively significant distance is essential for cytokinetic initiation only in the procyclic but may not be in the bloodstream form, CRK9 could be specifically involved in regulating cytokinetic initiation in the procyclic form of <it>T. brucei</it>.</p

    The Expanded Kinesin-13 Repertoire of Trypanosomes Contains Only One Mitotic Kinesin Indicating Multiple Extra-Nuclear Roles

    Get PDF
    BACKGROUND: Kinesin-13 proteins have a critical role in animal cell mitosis, during which they regulate spindle microtubule dynamics through their depolymerisation activity. Much of what is known about Kinesin-13 function emanates from a relatively small sub-family of proteins containing MCAK and Kif2A/B. However, recent work on kinesins from the much more widely distributed, ancestral Kinesin-13 family, which includes human Kif24, have identified a second function in flagellum length regulation that may exist either alongside or instead of the mitotic role. METHODOLOGY/PRINCIPAL FINDINGS: The African trypanosome Trypanosoma brucei encodes 7 distinct Kinesin-13 proteins, allowing scope for extensive specialisation of roles. Here, we show that of all the trypanosomal Kinesin-13 proteins, only one is nuclear. This protein, TbKIN13-1, is present in the nucleoplasm throughout the cell cycle, but associates with the spindle during mitosis, which in trypanosomes is closed. TbKIN13-1 is necessary for the segregation of both large and mini-chromosomes in this organism and reduction in TbKIN13-1 levels mediated by RNA interference causes deflects in spindle disassembly with spindle-like structures persisting in non-mitotic cells. A second Kinesin-13 is localised to the flagellum tip, but the majority of the Kinesin-13 family members are in neither of these cellular locations. CONCLUSIONS/SIGNIFICANCE: These data show that the expanded Kinesin-13 repertoire of trypanosomes is not associated with diversification of spindle-associated roles. TbKIN13-1 is required for correct spindle function, but the extra-nuclear localisation of the remaining paralogues suggests that the biological roles of the Kinesin-13 family is wider than previously thought

    Redox Modulation at Work: Natural Phytoprotective Polysulfanes From Alliums Based on Redox-Active Sulfur

    Get PDF
    Purpose of review: This article provides a brief overview of natural phytoprotective products of allium with a special focus on the therapeutic potential of diallyl polysulfanes from garlic, their molecular targets and their fate in the living organisms. A comprehensive overview of antimicrobial and anticancer properties of published literature is presented for the reader to understand the effective concentrations of polysulfanes and their sensitivity towards different human pathogenic microbes, fungi, and cancer cell lines. Recent findings: The article finds polysulfanes potentials as new generation novel antibiotics and chemo preventive agent. The effective dose rates of polysulfanes for antimicrobial properties are in the range of 0.5–40 mg/L and for anticancer 20–100 μM. The molecular targets for these redox modulators are mainly cellular thiols as well as inhibition and/or activation of certain cellular proteins in cancer cell lines. Summary: Antimicrobial and anticancer activities of polysulfanes published in the literature indicate that with further development, they could be promising candidates for cancer prevention due to their selectivity towards abnormal cells

    Population‐based cohort study of outcomes following cholecystectomy for benign gallbladder diseases

    Get PDF
    Background The aim was to describe the management of benign gallbladder disease and identify characteristics associated with all‐cause 30‐day readmissions and complications in a prospective population‐based cohort. Methods Data were collected on consecutive patients undergoing cholecystectomy in acute UK and Irish hospitals between 1 March and 1 May 2014. Potential explanatory variables influencing all‐cause 30‐day readmissions and complications were analysed by means of multilevel, multivariable logistic regression modelling using a two‐level hierarchical structure with patients (level 1) nested within hospitals (level 2). Results Data were collected on 8909 patients undergoing cholecystectomy from 167 hospitals. Some 1451 cholecystectomies (16·3 per cent) were performed as an emergency, 4165 (46·8 per cent) as elective operations, and 3293 patients (37·0 per cent) had had at least one previous emergency admission, but had surgery on a delayed basis. The readmission and complication rates at 30 days were 7·1 per cent (633 of 8909) and 10·8 per cent (962 of 8909) respectively. Both readmissions and complications were independently associated with increasing ASA fitness grade, duration of surgery, and increasing numbers of emergency admissions with gallbladder disease before cholecystectomy. No identifiable hospital characteristics were linked to readmissions and complications. Conclusion Readmissions and complications following cholecystectomy are common and associated with patient and disease characteristics

    Medicinal plants – prophylactic and therapeutic options for gastrointestinal and respiratory diseases in calves and piglets? A systematic review

    Full text link
    corecore