183 research outputs found

    The hadron-quark phase transition in dense matter and neutron stars

    Get PDF
    We study the hadron-quark phase transition in the interior of neutron stars (NS's). We calculate the equation of state (EOS) of hadronic matter using the Brueckner-Bethe-Goldstone formalism with realistic two-body and three-body forces, as well as a relativistic mean field model. For quark matter we employ the MIT bag model constraining the bag constant by using the indications coming from the recent experimental results obtained at the CERN SPS on the formation of a quark-gluon plasma. We find necessary to introduce a density dependent bag parameter, and the corresponding consistent thermodynamical formalism. We calculate the structure of NS interiors with the EOS comprising both phases, and we find that the NS maximum masses fall in a relatively narrow interval, 1.4MMmax1.7M1.4 M_\odot \leq M_{\rm max} \leq 1.7 M_\odot. The precise value of the maximum mass turns out to be only weakly correlated with the value of the energy density at the assumed transition point in nearly symmetric nuclear matter.Comment: 25 pages, Revtex4, 16 figures included as postscrip

    An Integrated Modeling Approach for Predicting Process Maps of Residual Stress and Distortion in a Laser Weld: A Combined CFD–FE Methodology

    Get PDF
    Laser welding has become an important joining methodology within a number of industries for the structural joining of metallic parts. It offers a high power density welding capability which is desirable for deep weld sections, but is equally suited to performing thinner welded joints with sensible amendments to key process variables. However, as with any welding process, the introduction of severe thermal gradients at the weld line will inevitably lead to process-induced residual stress formation and distortions. Finite element (FE) predictions for weld simulation have been made within academia and industrial research for a number of years, although given the fluid nature of the molten weld pool, FE methodologies have limited capabilities. An improvement upon this established method would be to incorporate a computational fluid dynamics (CFD) model formulation prior to the FE model, to predict the weld pool shape and fluid flow, such that details can be fed into FE from CFD as a starting condition. The key outputs of residual stress and distortions predicted by the FE model can then be monitored against the process variables input to the model. Further, a link between the thermal results and the microstructural properties is of interest. Therefore, an empirical relationship between lamellar spacing and the cooling rate was developed and used to make predictions about the lamellar spacing for welds of different process parameters. Processing parameter combinations that lead to regions of high residual stress formation and high distortion have been determined, and the impact of processing parameters upon the predicted lamellar spacing has been presented

    Electric-field controle of the pH-dependent redox process of cytochrome c immobilized on gold electrode

    No full text
    The pH-dependent redox processes of cytochrome c (cyt c) immobilized on a gold electrode that was coated with a self-assembled monolayer (SAM) of mercaptounadecanoic acid (MUA) were studied by electrochemical methods combined with quartz crystal microbalance (QCM) and surface enhanced infrared absorption (SEIRA) spectroscopy. Variation of the solution pH in the range from 4.0 to 10.0 determines the surface charge of the SAM, for which an apparent p

    Relationship between ambient fine particles and ventricular repolarization changes and heart rate variability of elderly people with heart disease in Beijing, China.

    No full text
    OBJECTIVE: To explore the effects of particulate matters less than 2.5 μm in aerodynamic diameter (PM2.5) on heart repolarization/depolarization and heart rate variability (HRV). METHODS: We conducted a panel study for elderly subjects with heart disease in Beijing from 2007 to 2008. PM2.5 was measured at a fixed station for 20 h continuously each day while electrocardiogram (ECG) indexes of 42 subjects were also recorded repeatedly. Meteorological data was obtained from the China Meteorological Data Sharing Service System. A mixed linear regression model was used to estimate the associations between PM2.5 and the ECG indexes. The model was adjusted for age, body mass index, sex, day of the week and meteorology. RESULTS: Significant adverse effects of PM2.5 on ECG indexes reflecting HRV were observed statistically and the strongest effect of PM2.5 on HRV was on lag 1 day in our study. However, there were no associations between PM2.5 and ECG indexes reflecting heart repolarization/depolarization. Additionally, the effects of PM2.5 on subjects with hypertension were larger than on the subjects without hypertension. CONCLUSION: This study showed ambient PM2.5 could affect cardiac autonomic function of the elderly people with heart disease, and subjects with hypertension appeared to be more susceptive to the autonomic dysfunction induced by PM2.5

    Functionalized twistacenes for solid state nonlinear optical materials

    Get PDF
    Contains fulltext : 183199.pdf (Publisher’s version ) (Open Access)6 p

    Rapid screening of monoclonal antibodies against porcine circovirus type 2 using colloidal gold-based paper test

    No full text
    A proof of concept for using paper test as a suitable method in the production of monoclonal antibodies (MAbs) is reported. The paper test which detects antibodies against porcine circovirus type 2 (PCV2) using colloidal gold-labelled capsid protein as the antigen probe was applied exclusively in the screening of anti-PCV2 MAbs. It allowed the detection of 118 single cell clones within 30 min using naked eyes. MAbs with specific binding to authentic epitopes on the virus were selected using a blocking strategy in which the antibody was pre-incubated with PCV2 viral sample before applying to the test paper. Five hybridomas secreting MAbs against the capsid protein were obtained, with only three of them capable of binding to PCV2. The results were validated and confirmed using enzyme-linked immunosorbent assay and immunofluorescence assay. The paper test is simple, rapid, and independent on professional technicians and proves to be an excellent approach for the screening of MAbs against specific targets
    corecore