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A B S T R A C T

A series of twistacenes with different substituents have been synthesized, characterized, and their nonlinear
optical properties in the solid state have been explored. It is demonstrated that 2,7-di-tert-butyl-N,9,20-triphe-
nyltetrabenzo[a,c,jk,op]pentacen-11-amine crystals having a centrosymmetric C2/c space group exhibit third-
order and strong second-order nonlinear optical responses with well-defined polarization dependencies.

1. Introduction

Highly efficient nonlinear optical (NLO) materials have aroused
considerable research interest during the past decades for their wide
applications in lasers, data storage, electro-optics, optical limiters, fre-
quency conversion and optical switches [1–3]. Benefiting from their
well-defined structural flexibility and functionality, and featuring ex-
tended π-electron delocalizations, organic π-conjugated compounds
have been widely explored as NLO materials [4–6]. Their diverse ad-
vantages include fast response, tailor-made structures and tuneable
bandgap [7–9]. The NLO properties of these π-conjugated molecular
systems are often interrelated with their intrinsic intramolecular charge
transfer (ICT) characteristics [10,11] and symmetry properties [12–16].
In particular, for second-order NLO processes such as second harmonic
generation (SHG), a non-centrosymmetric molecular arrangement is in
principle required [17].

Polycyclic aromatic hydrocarbons (PAHs) are one of the most
thoroughly investigated groups of organic π-conjugated molecules [18].
Among the various PAHs, twistacene and its derivatives have been the
subjects of extensive investigations in recent years, which demonstrate
novel synthetic strategies, interesting optoelectronic properties and
applications in organic optoelectronic devices [19–28]. The twisted
topological structures of twistacenes can not only suppress the π-
stacking interaction to some extent, but also effectively enhance the
molecular photo and thermal stability compared with the acenes. For
example, the Wudl, Zhang and Xiao groups successively synthesized

diverse twistacenes exhibiting strong fluorescence emission in the
visible region with tuneable bandgaps [29–42], which have been em-
ployed as active ingredients for organic light emitting devices that ex-
hibit fascinating electroluminescence properties. Furthermore, the
three-dimensional architecture based on twistacene units forms nano-
particles through self-assembly, resulting in multicolour nanomaterials
selectively adhered to the membrane and cytoplasm of HeLa cells [43].
These twistacenes, featuring the extended π-conjugation as well as the
chemical variability and structural diversity, could serve as ideal can-
didates for NLO materials. However, the NLO properties of twistacene
and its derivatives have been relatively unexplored, but are highly
valued for broadening their applications in the fields such as photonic
devices and NIR bio-imaging. Recently, we found that twistacene de-
rivatives are promising NLO materials by studying their third-order
nonlinear optical two-photon absorption (TPA) properties in solution
using the Z-scan technique [44,45], where the as-synthesized spindle-
type molecules exhibited a broadband optical limiting capability that
the wavelength could range from 500 nm to 1000 nm exposing to
femtosecond, picosecond and nanosecond laser pulses. Here, we are
more interested in the solid state NLO responses of the twistacenes and
their derivatives. Thus, three novel functionalized twistacenes with
different suspending subsitutents PTPA/OPTPA/NPTPA have been
designed, synthesized and characterized (Scheme 1). Molecule PTPA
presented a twisted configuration with the twisted angle of 33.55 de-
termined at C19-C20-C24 and C47-C49-C50. All of them emitted olive
fluorescence in dichloromethane. Furthermore, we investigated the
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solid state second- and third-order NLO behaviors of PTPA crystals.

2. Experimental

2.1. Materials and instruments

NMR spectra were recorded in deuterated solvents on a 600 MHz
Bruker NMR spectrometer. MALDI-TOF mass spectra were obtained on
Bruker Biflex III MALDITOF. UV-Vis absorption and PL spectra were
measured on a Shimadzu UV-2550 and RF5300PC spectrometers. The
solid quantum yields were determined with an integrating sphere on
New Fluorolog TCSPC Spectrofluorometer from HORIBA.
Thermogravimetric analysis (TGA) was finished with a NETZSCH
STA449C under nitrogen by heating the samples from 30 to 800 °C at a
heating rate of 10 °C/min. Cyclic voltammetry (CV) was carried out in a
tetrabutylammonium hexafluorophosphate (TPAPF6, 0.1 mol/L) sup-
ported dry dichloromethane at room temperature using a CHI 630A
electrochemical workstation operated at a scanning rate of 50 mV/s.
Ferrocene/ferrocenium was used as the internal reference to calibrate
the redox potentials.

2.2. Synthesis procedure

2.2.1. 11,12-bis(3-bromophenyl)-2,7-di-tert-butyl-9,14-diphenyldibenzo
[de,qr]tetracene (3)

Pd(PPh3)4 (40 mg, 0.035 mmol) was added to a mixture of com-
pound 1 (362 mg, 0.5 mmol), 2-bromophenylboronic acid (2, 251 mg,
1.25 mmol) and K2CO3 (138 mg, 1 mmol) in THF/H2O (20 mL:10 mL)
solution. The reaction solution was degassed and then stirred at 85 °C
for 16 h. After cooling to room temperature, THF was removed under
reduced. The as-obtained solution was extracted with dichloromethane
(30 mL) for three times. The collected organic phase was dried over
Na2SO4 and evaporated. The residue was purified with silica gel column
chromatography using petroleum ether and dichloromethane (v/v,
100:1) to afford 3 as a yellow solid (202 mg, 46%). FT-IR (KBr): 3053,
2953, 2907, 2863, 1601, 1451, 1023, 883, 757, 731, 694 cm−1. 1H
NMR (600 MHz, CDCl3, 298 K): δ = 8.20 (d, J = 7.8 Hz, 2H), 8.14 (s,
2H), 7.97–7.93 (m, 2H), 7.87–7.85 (m, 4H), 7.78–7.76 (m, 2H), 7.58 (d,
J = 7.8 Hz, 2H), 7.44 (t, 1J = 7.8 Hz, 2J = 7.2 Hz, 2H), 7.33 (t, 2H),
7.22 (d, J = 7.8 Hz, 2H), 7.06–6.98 (m, 6H), 1.13 (s, 18H). 13C NMR
(150 MHz, CDCl3, 298 K): δ = 147.3, 142.0, 141.7, 137.6, 136.2,
133.8, 132.5, 131.8, 131.6, 130.8, 130.5, 130.3, 129.7, 129.6, 129.2,

128.8, 128.4, 127.8, 127.7, 126.9, 126.7, 123.9, 122.3, 34.8, 31.4. MS
(MALDI-TOF): calc. for C56H44Br2: [m/z] 876.2, found: [m/z] 876.5.

2.2.2. 2,7-di-tert-butyl-N,9,20-triphenyltetrabenzo[a,c,jk,op]pentacen-11-
amine (PTPA)

A mixture of 3 (131 mg, 0.15 mmol), aniline (21 mg, 0.23 mmol),
Pd(OAc)2 (17 mg, 0.08 mmol), tricyclohexylphosphine (PCy3, 21 mg,
0.08 mmol), KOtBu (170 mg, 1.5 mmol) in toluene (20 mL) was stirred
and heated at 110 °C for 48 h under nitrogen atmosphere. After cooling
to room temperature, toluene was removed and then water was added.
The aqueous phase was extracted with dichloromethane for three times.
The formed organics was dried with Na2SO4 and the solvent was eva-
porated. The residue was purified by column chromatography (silica
gel) with petroleum ether/dichloromethane (v/v, 25:1) to afford a
yellow solid (40 mg, 33%). FT-IR (KBr): 3422, 3056, 2953, 2905, 2863,
1596, 1500, 1444, 1303, 884, 749, 691 cm−1. 1H NMR (600 MHz,
CDCl3, 298 K): δ = 9.90 (s, 1H), 9.01 (s, 1H), 8.48 (d, J = 7.8 Hz, 1H),
8.24–8.19 (m, 3H), 8.13 (s, 1H), 7.84 (s, 3H), 7.81 (s, 1H), 7.75 (d,
J = 7.8 Hz, 2H), 7.68 (t, 1J = 7.8 Hz, 2J = 7.2 Hz, 2H), 7.60–7.43 (m,
7H), 7.23 (t, 1J = 7.8 Hz, 2J = 7.2 Hz, 2H), 7.14 (t, 1J = 7.8 Hz,
2J = 7.2 Hz, 2H), 7.06 (t, 1J = 7.8 Hz, 2J = 7.2 Hz, 1H), 6.88 (t,
1J = 7.2 Hz, 2J = 6.6 Hz, 1H), 6.69 (d, J = 8.4 Hz, 2H), 5.80 (s, 1H),
1.14 (s, 9H), 1.07 (s, 9H). 13C NMR (150 MHz, CDCl3, 298 K):
δ= 147.33, 147.27, 142.72, 142.69, 142.1, 141.5, 136.2, 135.8, 133.0,
132.7, 131.8, 130.7, 130.62, 130.60, 130.55, 130.4, 130.3, 130.0,
129.9, 129.8, 129.7, 129.4, 129.2, 129.1, 128.6, 127.92, 127.87,
127.78, 127.71, 127.69, 127.65, 127.61, 127.3, 127.0, 126.9, 124.0,
123.9, 123.5, 122.4, 122.34, 122.26, 121.1, 120.6, 119.3, 118.0, 117.3,
34.75, 34.71, 31.4, 31.3. MS (MALDI-TOF): calc. for C62H49N: [m/z]
807.4, found: [m/z] 807.3.

2.2.3. 2,7-di-tert-butyl-N-(4-methoxyphenyl)-9,20-diphenyltetrabenzo
[a,c,jk,op] pentacen-11-amine (OPTPA)

A mixture of 3 (127 mg, 0.15 mmol), 4-anisidine (28 mg,
0.23 mmol), Pd(OAc)2 (17 mg, 0.08 mmol), tricyclohexylphosphine
(PCy3, 21 mg, 0.08 mmol), KOtBu (168 mg, 1.5 mmol) in toluene
(20 mL) was stirred and heated at 110 °C for 48 h under nitrogen at-
mosphere. After cooling to room temperature, toluene was removed
and then brine was added. The aqueous phase was extracted with di-
chloromethane for three times. The formed organics was dried with
Na2SO4 and the solvent was evaporated. The residue was purified by
column chromatography (silica gel) with petroleum ether/di-
chloromethane (v/v, 4:1) to afford a yellow solid (48 mg, 38%). FT-IR
(KBr): 3429, 3054, 2949, 2902, 1512, 1233, 878, 748 cm−1. 1H NMR
(600 MHz, CDCl3, 298 K): δ = 9.85 (s, 1H), 9.01 (s, 1H), 8.47 (d,
J = 8.4 Hz, 1H), 8.23 (t, 2H), 8.15 (s, 1H), 8.09 (d, J = 7.8 Hz, 1H),
7.84 (s, 3H), 7.82 (s, 1H), 7.75 (d, J= 7.2 Hz, 2H), 7.68 (t, 1J= 7.8 Hz,
2J = 7.2 Hz, 2H), 9.60–7.48 (m, 5H), 7.40 (t, 1J = 8.4 Hz, 2J = 7.8 Hz,
1H), 7.30 (t, J = 7.8 Hz, 2H), 7.23 (d, J = 7.8 Hz, 1H), 7.16 (t,
1J = 7.8 Hz, 2J = 7.2 Hz, 1H), 6.77 (d, J = 8.4 Hz, 2H), 6.70 (d,
J = 8.4 Hz, 2H), 5.85 (s, 1H), 3.81 (s, 3H), 1.13 (s, 9H), 1.08 (s, 9H).
13C NMR (150 MHz, CDCl3, 298 K): δ = 155.3, 147.5, 147.4, 143.7,
143.0, 142.5, 136.2, 136.0, 135.8, 133.0, 132.8, 132.1, 131.0, 130.72,
130.70, 130.65, 130.5, 130.48, 130.0, 129.9, 129.8, 129.6, 129.4,
128.8, 128.1, 128.02, 128.0, 127.9, 127.86, 127.76, 127.7, 127.5,
127.1, 127.0, 124.14, 124.12, 124.09, 123.6, 123.58, 122.5, 122.4,
122.1, 121.3, 120.8, 116.9, 115.7, 114.7, 100.1, 55.8, 34.89, 34.87,
31.52, 31.47. MS (MALDI-TOF): calc. for C63H51NO: [m/z] 837.4,
found: [m/z] 835.6.

2.2.4. N1-(2,7-di-tert-butyl-9,20-diphenyltetrabenzo[a,c,jk,op]pentacen-
11-yl)-N4,N4-dimethylbenzene-1,4-diamine (NPTPA)

A mixture of 3 (201 mg, 0.23 mmol), N,N-dimethyl-1,4-phenyle-
nediamine (6, 47 mg, 0.34 mmol), Pd(OAc)2 (26 mg, 0.12 mmol), tri-
cyclohexylphosphine (PCy3, 32 mg, 0.12 mmol), KOtBu (336 mg,
2.3 mmol) in toluene (20 mL) was stirred and refluxed for 48 h under
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Scheme 1. Molecular structures of PTPA, OPTPA and NPTPA.
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nitrogen atmosphere. After cooling to room temperature, toluene was
removed and then water was added. The aqueous phase was extracted
with dichloromethane (30 mL) for three times. The organics was dried
over Na2SO4 and the solvent was evaporated under reduced pressure.
The residue was purified by column chromatography (silica gel) with
petroleum ether/dichloromethane (v/v, 4:1) to afford a yellow solid
(22 mg, 11%). FT-IR (KBr): 3435, 3051, 2956, 2926, 2857, 1604, 1514,
1444, 1359, 883, 757, 699 cm−1. 1H NMR (600 MHz, CDCl3, 298 K):
δ = 8.68 (d, J = 7.2 Hz, 1H), 8.57 (s, 1H), 8.48 (d, J = 7.8 Hz, 1H),
8.17 (d, J = 6.6 Hz, 1H), 8.10 (d, J = 7.2 Hz, 1H), 7.97 (d, J = 1.2 Hz,
1H), 7.84–7.65 (m, 9H), 7.56 (t, 1J = 7.8 Hz, 2J = 7.2 Hz, 1H),
7.47–7.32 (m, 7H), 7.19 (s, 2H), 6.70 (s, 2H), 6.59 (s, 2H), 2.84 (s, 6H),
1.16 (s, 9H), 1.00 (s, 9H). 13C NMR (150 MHz, CDCl3, 298 K):
δ = 147.3, 146.5, 143.5, 142.1, 141.2, 136.9, 134.4, 133.9, 133.3,
132.8, 132.2, 132.1, 130.32, 130.29, 130.1, 129.8, 129.6, 128.6, 128.5,
128.4, 127.7, 127.6, 127.5, 127.3, 127.1, 127.0, 126.8, 126.74, 126.66,
125.7, 125.4, 124.9, 124.0, 123.7, 122.1, 121.9, 121.8, 120.3, 113.7,
113.1, 109.1, 100.0, 34.8, 34.5, 31.5, 31.3, 29.7. MS (MALDI-TOF):
calc. for C64H54N2: [m/z] 850.4, found: [m/z] 848.4.

3. Results and discussion

3.1. Synthesis

Scheme 2 summarizes the synthesis of the target compounds PTPA,
OPTPA and NPTPA. The intermediate 11,12-bis(2-bromophenyl)-2,7-
di-tert-butyl-9,14-diphenyldibenzo[de,qr]tetracene(3) was obtained in
46% yield via a classical Suzuki-coupling reaction between 11,12-di-
bromo-2,7-di-tert-butyl-9,14-diphenyldibenzo[de,qr] tetracene (1) [39]
and the commercially available 2-bromophenylboronic acid (2). The
end-capping seven-heteroring fused arene 5 are expected to be formed
when compound 3 was treated with aniline through the Pd-catalyzed
Buchwald-Hartwig coupling. However, detailed 1H and 13C NMR to-
gether with MALDI-TOF MS spectroscopic characterizations (Fig. S3-
S14) suggest that the six-membered ring fused twistacene PTPA was
formed instead. Other than aniline, 4-anisidine and N,N-dimethyl-1,4-
phenylenediamine have been also used to react with 3 under similar
conditions, and the reactions also afforded corresponding six-mem-
bered ring fused compounds OPTPA and NPTPA. The resulting

compounds are readily soluble in common organic solvents such as
toluene, 1,2-dichlorobenzene (ODCB), dichloromethane and chloro-
form. All of them exhibited high thermal stability as suggested by
thermogravimetric analysis (TGA) with about 5% weight loss occurring
at 460 °C, 455 °C and 415 °C, respectively (Fig. S1).

3.2. Single crystal

To further clarify the formation of the six-membered ring fused
twistacenes instead of the end-capping seven-heteroring fused twista-
cenes, we attempted to solve the crystal structures of the products.
Single crystals of the aniline functionalized product have been obtained
for the single-crystal X-ray analysis by slowly evaporation of its solution
in a mixture solvent of dichloromethane and methanol. It is suggested
that six-membered ring fused twistacenes PTPA was indeed formed
(Fig. 1 and Table S1). PTPA crystalizes in a monoclinic unit cell with a
space group of C2/c and unit cell dimensions a = 34.0909(6) Å,
b = 10.0929(1) Å, c = 30.5775(6) Å, α = 90°, β = 123.594(3)°,
γ = 90° (CCDC number: 1571274). It forms a highly twisted structure,
where the end-capping pyrene unit and the adjacent naphthalene
moiety are not coplanar because of the steric effect between the benzo
moieties and lateral phenyl groups. The twisted angle determined at
C19-C20-C24 and C47-C49-C50 is about 33.55° (Fig. 1a and 1b). More
interestingly, the phenylamino group was suspended on the parent
twistacene. As shown in Fig. 1c, PTPA presented a slipped one-di-
mensional motif with an anti-configuration. The mismatch arrangement
also suggested poor electronic coupling between adjacent molecules.

3.3. Optical and electrochemical properties

The linear UV-vis absorption and fluorescence spectra of the as-
formed compounds were measured in diluted dichloromethane solution
(Fig. 2 and Table S2). PTPA and OPTPA displayed a similar absorption
spectrum with the absorption peaks at 462 nm, 409 nm, 372 nm and
355 nm. When phenyl or 4-methoxyphenyl substituents were replaced
by the 4-(dimethylamino)phenyl group, the resulted molecule NPTPA
features a broad low-energy absorption band of 433–471 nm and
slightly red-shift bands at 385 nm and 367 nm. When excited at
370 nm, all the compounds emitted strong green fluorescence centered
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Fig. 1. (a) Single crystal X-ray structure of PTPA, (b) side view and (c) its packing model.
Hydrogen atoms are omited for clarity.
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at 532 nm for PTPA, 571 nm for OPTPA and 548 nm for NPTPA, re-
spectively. The quantum yields (Φf) were determined to be 0.08 for
PTPA, 0.04 for OPTPA, and 0.16 for NPTPA, respectively, with 9,10-
diphenylanthracene (Φf = 0.95 in ethanol) as a standard [46]. The
absolute fluorescence quantum yield in the solid state was 0.1% for
PTPA, 0.06% for OPTPA and 0.27% for NPTPA, as determined with an
integrating sphere. In addition, the fluorescence times (τs) were mea-
sured to be 2.3 ns for PTPA, 4.2 ns for OPTPA and 9.7 ns for NPTPA
(Fig. S2 and Table S2). Based on the equations Kr = Φf/τs and Knr = (1-
Φf)/τs, the radiative rate constant (kr) and nonradiative rate constant
(knr) are 0.35 × 108 s−1, 4.04 × 108 s−1 for PTPA, 0.10 × 108 s−1,
2.30 × 108 s−1 for OPTPA, and 0.16 × 108 s−1, 0.87 × 108 s−1 for
NPTPA, respectively.

The Electrochemical properties of the as-prepared compounds were
investigated to evaluate the redox behaviors (Fig. 3 and Table S2).
PTPA showed two reversible anionic redox processes with peak po-
tentials at 0.49 V and 0.77 V against Fc/Fc+, corresponding to the
oxidation of the amine unit and parent backbone moiety, respectively.
When the pendent phenyl group in PTPA were replaced by 4-methox-
yphenyl or 4-dimethylaminophenyl group, the as-obtained compounds
OPTPA and NPTPA showed similar voltammograms with the oxidation
peaks at 0.25 V, 0.62 V, 0.86 V and 0.18 V, 0.56 V, 0.95 V, respectively.
This might be ascribed to the oxidation of the amine groups, the sus-
pended methoxy/dimethylamino untis and the acene skeleton. The first
oxidation peaks of OPTPA and NPTPA were significantly negatively
shifted compared with that of PTPA, suggesting that the suspended
substituents affect the electrochemical behavior to a great extent. On
the basis of the first oxidation potentials, the highest occupied mole-
cular orbital (HOMO) energy levels were calculated to be −5.29 eV for
PTPA, −5.05 eV for OPTPA and −4.98 eV for NPTPA, respectively.
The highest HOMO energy level of NPTPA led to the relative unstability
under air environment in comparison to the other two analogues.

Accordingly, the LUMO energy levels are determined to be −2.74 eV
for PTPA (2.55 eV), −2.57 eV for OPTPA (2.48 eV) and −2.48 eV for
NPTPA (2.50 eV), respectively, based on the oxidation peaks and the
band gaps derived from the UV-vis absorption spectra.

3.4. Nonlinear optical properties

The nonlinear optical properties of the as-formed PTPA single
crystals have been studied using a home-built laser scanning micro-
scope with a pump of femtosecond near-infrared (NIR) laser (wave-
length tunable from 730 to 980 nm, 120 fs, 82 MHz), in a reflection
geometry with the incidence and detection angles both at 45° [13–15].
From the spectrum registered from the PTPA single crystal pumped at
950 nm, one can clearly notice a strong fluorescence response peaked at
about 535 nm (Fig. 4a). This signal resembles the normal fluorescence
emission (Fig. 2), but is clearly a nonlinear upconversion two-photon
excited fluorescence (TPF) process, given the pump wavelength at
950 nm. Meanwhile a sharp and strong peak at 475 nm was observed
and should be attributed to the second-order nonlinear optical SHG.
The scanned image by detecting this SHG signal at 475 nm shows a
clear outline of the rod-like crystal (inset of Fig. 4a), demonstrating that
the SHG response originates indeed from the PTPA crystal. The signal
intensities of SHG and TPF scale quadratically as function of the power
of the pump (Fig. 4b), indicating the intrinsic two-photon nature of
both NLO processes. Furthermore, the various spectra taken from the
same spot of the PTPA crystal by changing the wavelength of the pump
further confirm the different nature of the NLO processes by their wa-
velength dependencies (Fig. 4c). The SHG peak position shifts, being
always half the wavelength of the pump. In contrast, the TPF stays at
the same peak position, with various intensities as the pump wave-
length changes. The intensities of both SHG and TPF as function of the
wavelength show a clear enhancement effect (inset of Fig. 4c) in re-
sonance with the linear absorption bands (Fig. 2). The observed in-
tensity of both NLO responses as function of the polarization angle of
the incident pump demonstrated well-defined angular dependencies.
The intensity of TPF demonstrated a dipolar plot in the polarization
dependence with the highest responses when the incident pump was p-
polarized (polarization angle ɵ = 0° and 180°). In contrast, the polar-
ization dependence of SHG demonstrated a quadrupole plot, reaching
the maximum intensity when the polarization angle was about 45°,
135°, 225°, and 315°. The polarization ratio, ρ = (Imax – Imin)/(Imax +
Imin), was determined to be 0.95 ± 0.05 and 0.97 ± 0.01 for the SHG
and TPF of the PTPA crystal, respectively. The very high polarization
ratios of both NLO responses reveal the intrinsic well-defined structure.
The efficiency of the second-order nonlinearity of the PTPA crystal was
evaluated by measuring its SHG intensity in comparison with that of the
Y-cut quartz under the same measurement conditions. The results
suggested that the PTPA crystals have a relative value of 5% to that of
the Y-cut quartz at 800 nm. The observation of such a relatively strong
SHG signal from the PTPA crystal is quite surprising considering its
centrosymmetric monoclinic space group of C2/c. Similar observations
of strong SHG in centrosymmetric crystal phases have been recently
reported from the Zn(II) complex (C2/c) [47] and potassium dihy-
drogen phosphate (KDP, P21/c) crystals [48]. In these studies, it is ar-
gued that either the residual non-centrosymmetry [47] or the sym-
metry-breaking in the twin-crystal lattice in conjunction with tight
confinement of the light field by the microcrystal structure [48] could
be the origins of the observed strong SHG from these “centrosymmetric”
crystals. Such attributions might also apply to the observation of strong
SHG from the centrosymmetric PTPA crystal with the same C2/c space
group in this case. The observation of SHG from the bulk “centrosym-
metric” solid-state materials of twistacenes might open the opportu-
nities for advanced photonic applications of these novel materials.

Fig. 2. UV-vis absorption and fluorescence spectra of compounds PTPA, OPTPA, NPTPA
in dichloromethane (1.0 × 10−5 M).

Fig. 3. Cyclic voltammograms of compounds PTPA, OPTPA and NPTPA.
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4. Conclusions

In summary, we have synthesized a family of functionalized twis-
tacenes modified with pyrene and phenanthrene units at the terminal.
The compound PTPA forms well-defined crystals with a monoclinic C2/
c unit cell. The crystal exhibits not only strong third-order optical
nonlinearity, but also strong SHG, despite of the centrosymmtric crystal
structure. Although more detailed structural investigations and extra
knowledge for the molecular crystals are necessary to understand the
origin of this phenomenon, the observed strong NLO responses along
with their very high polarization ratios promise wide applications of
twistacene materials in the fields such as photonic devices and NIR bio-
imaging.
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