144 research outputs found
Land cover maps for environmental modeling at multiple scales
As described in the ECOCHANGE proposal, Task01.02.02 âMap production and aggregationâ, two major products are generated within this WP. Firstly, land cover maps at high spatial resolutions will be produced for the European Union and for the reference years of 1960, 1990 and 2000. Secondly, thematic and spatial aggregated products will be derived at coarser spatial resolutions in order to synthesize the fragmentation and variability within coarser cells for biodiversity assessment and modelling. The name of the official deliverable is D01.02.01 âLand cover maps for environmental modelling at multiple scalesâ and includes this report, the digital land cover products and an interactive website to view the data at all thematic and spatial scales
Atomistic Studies of Defect Nucleation during Nanoindentation of Au (001)
Atomistic studies are carried out to investigate the formation and evolution
of defects during nanoindentation of a gold crystal. The results in this
theoretical study complement the experimental investigations [J. D. Kiely and
J. E. Houston, Phys. Rev. B, v57, 12588 (1998)] extremely well. The defects are
produced by a three step mechanism involving nucleation, glide and reaction of
Shockley partials on the {111} slip planes noncoplanar with the indented
surface. We have observed that slip is in the directions along which the
resolved shear stress has reached the critical value of approximately 2 GPa.
The first yield occurs when the shear stresses reach this critical value on all
the {111} planes involved in the formation of the defect. The phenomenon of
strain hardening is observed due to the sessile stair-rods produced by the
zipping of the partials. The dislocation locks produced during the second yield
give rise to permanent deformation after retraction.Comment: 11 pages, 13 figures, submitted to Physical Review
Zeta function method and repulsive Casimir forces for an unusual pair of plates at finite temperature
We apply the generalized zeta function method to compute the Casimir energy
and pressure between an unusual pair of parallel plates at finite temperature,
namely: a perfectly conducting plate and an infinitely permeable one. The high
and low temperature limits of these quantities are discussed; relationships
between high and low temperature limits are estabkished by means of a modified
version of the temperature inversion symmetry.Comment: latex file 9 pages, 3 figure
Phenological synchrony and seasonality of understory Rubiaceae in the Atlantic Forest, Bahia, Brazil
Strong floristic distinctiveness across Neotropical successional forests
Forests that regrow naturally on abandoned fields are important for restoring biodiversity and ecosystem services, but can they also preserve the distinct regional tree floras? Using the floristic composition of 1215 early successional forests (â€20 years) in 75 human-modified landscapes across the Neotropic realm, we identified 14 distinct floristic groups, with a between-group dissimilarity of 0.97. Floristic groups were associated with location, bioregions, soil pH, temperature seasonality, and water availability. Hence, there is large continental-scale variation in the species composition of early successional forests, which is mainly associated with biogeographic and environmental factors but not with human disturbance indicators. This floristic distinctiveness is partially driven by regionally restricted species belonging to widespread genera. Early secondary forests contribute therefore to restoring and conserving the distinctiveness of bioregions across the Neotropical realm, and forest restoration initiatives should use local species to assure that these distinct floras are maintained
Highly-parallelized simulation of a pixelated LArTPC on a GPU
The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype
Recommended from our members
Are axonally transported proteins released from sciatic nerves?
A recent report by Hines and Garwood
4 claimed a significant release of axonally transported proteins from frog sciatic nerve into a surrounding solution. In the present study no significant release of axonally transported protein from frog sciatic nerves was detected with more stringent control for non-axonal sources of released protein
Design basis neutronics calculations for NRU-LOCA experiments
The report describes the neutronics analysis for the LOCA simulation experiments in the NRU reactor. The experimental program will provide greater understanding of nuclear fuel assembly behavior during the heatup, reflood and quench sequence of a hypothetical LOCA. The decay heat and stored heat, which are the energy source in a LOCA will be simulated by fission heat provided by the NRU reactor. The reactor, the test and test operation are described
- âŠ