27 research outputs found
Strong Decays of Strange Quarkonia
In this paper we evaluate strong decay amplitudes and partial widths of
strange mesons (strangeonia and kaonia) in the 3P0 decay model. We give
numerical results for all energetically allowed open-flavor two-body decay
modes of all nsbar and ssbar strange mesons in the 1S, 2S, 3S, 1P, 2P, 1D and
1F multiplets, comprising strong decays of a total of 43 resonances into 525
two-body modes, with 891 numerically evaluated amplitudes. This set of
resonances includes all strange qqbar states with allowed strong decays
expected in the quark model up to ca. 2.2 GeV. We use standard nonrelativistic
quark model SHO wavefunctions to evaluate these amplitudes, and quote numerical
results for all amplitudes present in each decay mode. We also discuss the
status of the associated experimental candidates, and note which states and
decay modes would be especially interesting for future experimental study at
hadronic, e+e- and photoproduction facilities. These results should also be
useful in distinguishing conventional quark model mesons from exotica such as
glueballs and hybrids through their strong decays.Comment: 69 pages, 5 figures, 39 table
Towards resolution of the enigmas of P-wave meson spectroscopy
The mass spectrum of P-wave mesons is considered in a nonrelativistic
constituent quark model. The results show the common mass degeneracy of the
isovector and isodoublet states of the scalar and tensor meson nonets, and do
not exclude the possibility of a similar degeneracy of the same states of the
axial-vector and pseudovector nonets. Current experimental hadronic and \tau
-decay data suggest, however, a different scenario leading to the a_1 meson
mass \simeq 1190 MeV and the K_{1A}-K_{1B} mixing angle \simeq (37\pm 3)^o.
Possible s\bar{s} states of the four nonets are also discussed.Comment: 22 pages, LaTe
Decoherence and CPT Violation in a Stringy Model of Space-Time Foam
I discuss a model inspired from the string/brane framework, in which our
Universe is represented as a three brane, propagating in a bulk space time
punctured by D0-brane (D-particle) defects. As the D3-brane world moves in the
bulk, the D-particles cross it, and from an effective observer on D3 the
situation looks like a ``space-time foam'' with the defects ``flashing'' on and
off (``D-particle foam''). The open strings, with their ends attached on the
brane, which represent matter in this scenario, can interact with the
D-particles on the D3-brane universe in a topologically non-trivial manner,
involving splitting and capture of the strings by the D0-brane defects. Such
processes are described by logarithmic conformal field theories on the
world-sheet. Physically, they result in effective decoherence of the string
matter on the D3 brane, and as a result, of CPT Violation, but of a type that
implies an ill-defined nature of the effective CPT operator. Due to electric
charge conservation, only electrically neutral (string) matter can exhibit such
interactions with the D-particle foam. This may have unique, experimentally
detectable, consequences for electrically-neutral entangled quantum matter
states on the brane world, in particular the modification of the pertinent EPR
Correlation of neutral mesons in a meson factory.Comment: 41 pages Latex, five eps figures incorporated. Uses special macro
Energy and system size dependence of \phi meson production in Cu+Cu and Au+Au collisions
We study the beam-energy and system-size dependence of \phi meson production
(using the hadronic decay mode \phi -- K+K-) by comparing the new results from
Cu+Cu collisions and previously reported Au+Au collisions at \sqrt{s_NN} = 62.4
and 200 GeV measured in the STAR experiment at RHIC. Data presented are from
mid-rapidity (|y|<0.5) for 0.4 < pT < 5 GeV/c. At a given beam energy, the
transverse momentum distributions for \phi mesons are observed to be similar in
yield and shape for Cu+Cu and Au+Au colliding systems with similar average
numbers of participating nucleons. The \phi meson yields in nucleus-nucleus
collisions, normalised by the average number of participating nucleons, are
found to be enhanced relative to those from p+p collisions with a different
trend compared to strange baryons. The enhancement for \phi mesons is observed
to be higher at \sqrt{s_NN} = 200 GeV compared to 62.4 GeV. These observations
for the produced \phi(s\bar{s}) mesons clearly suggest that, at these collision
energies, the source of enhancement of strange hadrons is related to the
formation of a dense partonic medium in high energy nucleus-nucleus collisions
and cannot be alone due to canonical suppression of their production in smaller
systems.Comment: 20 pages and 5 figure
Evidence of psi(3770) non-DD-bar Decay to J/psi pi+pi-
Evidence of decays to a non- final state is
observed. A total of \psi(3770) \to \PPJP events are
obtained from a data sample of 27.7 taken at center-of-mass
energies around 3.773 GeV using the BES-II detector at the BEPC. The branching
fraction is determined to be BF(\psi(3770) \to \PPJP)=(0.34\pm 0.14 \pm
0.09)%, corresponding to the partial width of \Gamma(\psi(3770) \to \PPJP) =
(80 \pm 33 \pm 23) keV.Comment: 8 pages, 7 figures, Submitted to Physics Letters
A paradoxical severe decrease in serum HDL-cholesterol after treatment with a fibrate
There have been a handful of reports in the literature of a paradoxical decrease in serum high density lipoprotein (HDL)-cholesterol in patients on fibrate drugs. The reason for this decline in cardioprotective HDL-cholesterol is not known and may have potential deleterious effects on the patient. This report describes a decrease in serum HDL-cholesterol in a patient on both simvastatin and bezafibrate. This patient also developed abnormal renal function, probably interstitial nephritis. In addition, the literature of fibrate induced serum HDL-cholesterol decline is reviewed and possible mechanisms for this phenomenon discussed. Key Words: fibrate • high density lipoprotein-cholesterol • renal functio