134 research outputs found

    Particle motion and gravitational lensing in the metric of a dilaton black hole in a de Sitter universe

    Get PDF
    We consider the metric exterior to a charged dilaton black hole in a de Sitter universe. We study the motion of a test particle in this metric. Conserved quantities are identified and the Hamilton-Jacobi method is employed for the solutions of the equations of motion. At large distances from the black hole the Hubble expansion of the universe modifies the effective potential such that bound orbits could exist up to an upper limit of the angular momentum per mass for the orbiting test particle. We then study the phenomenon of strong field gravitational lensing by these black holes by extending the standard formalism of strong lensing to the non-asymptotically flat dilaton-de Sitter metric. Expressions for the various lensing quantities are obtained in terms of the metric coefficients.Comment: 8 pages, RevTex, 1 eps figures; discussion improved; typos corrected; references adde

    New Classes of Off-Diagonal Cosmological Solutions in Einstein Gravity

    Full text link
    In this work, we apply the anholonomic deformation method for constructing new classes of anisotropic cosmological solutions in Einstein gravity and/or generalizations with nonholonomic variables. There are analyzed four types of, in general, inhomogeneous metrics, defined with respect to anholonomic frames and their main geometric properties. Such spacetimes contain as particular cases certain conformal and/or frame transforms of the well known Friedman-Robertson-Walker, Bianchi, Kasner and Godel universes and define a great variety of cosmological models with generic off-diagonal metrics, local anisotropy and inhomogeneity. It is shown that certain nonholonomic gravitational configurations may mimic de Sitter like inflation scenaria and different anisotropic modifications without satisfying any classical false-vacuum equation of state. Finally, we speculate on perspectives when such off-diagonal solutions can be related to dark energy and dark matter problems in modern cosmology.Comment: latex2e, 11pt, 33 pages with table of content, a variant accepted to IJT

    Gravitomagnetic Effects in the Propagation of Electromagnetic Waves in Variable Gravitational Fields of Arbitrary-Moving and Spinning Bodies

    Get PDF
    Propagation of light in the gravitational field of self-gravitating spinning bodies moving with arbitrary velocities is discussed. The gravitational field is assumed to be "weak" everywhere. Equations of motion of a light ray are solved in the first post-Minkowskian approximation that is linear with respect to the universal gravitational constant GG. We do not restrict ourselves with the approximation of gravitational lens so that the solution of light geodesics is applicable for arbitrary locations of source of light and observer. This formalism is applied for studying corrections to the Shapiro time delay in binary pulsars caused by the rotation of pulsar and its companion. We also derive the correction to the light deflection angle caused by rotation of gravitating bodies in the solar system (Sun, planets) or a gravitational lens. The gravitational shift of frequency due to the combined translational and rotational motions of light-ray-deflecting bodies is analyzed as well. We give a general derivation of the formula describing the relativistic rotation of the plane of polarization of electromagnetic waves (Skrotskii effect). This formula is valid for arbitrary translational and rotational motion of gravitating bodies and greatly extends the results of previous researchers. Finally, we discuss the Skrotskii effect for gravitational waves emitted by localized sources such as a binary system. The theoretical results of this paper can be applied for studying various relativistic effects in microarcsecond space astrometry and developing corresponding algorithms for data processing in space astrometric missions such as FAME, SIM, and GAIA.Comment: 36 pages, 1 figure, submitted to Phys. Rev.

    The Subleading Term of the Strong Coupling Expansion of the Heavy-Quark Potential in a N=4\mathcal N=4 Super Yang-Mills Vacuum

    Full text link
    Applying the AdS/CFT correspondence, the expansion of the heavy-quark potential of the N=4{\cal N}=4 supersymmetric Yang-Mills theory at large NcN_c is carried out to the sub-leading term in the large 't Hooft coupling at zero temperature. The strong coupling corresponds to the semi-classical expansion of the string-sigma model, the gravity dual of the Wilson loop operator, with the sub-leading term expressed in terms of functional determinants of fluctuations. The singularities of these determinants are examined and their contributions are evaluated numerically.Comment: Updated version with minor typo corrections and new reference

    The Similarity Hypothesis in General Relativity

    Full text link
    Self-similar models are important in general relativity and other fundamental theories. In this paper we shall discuss the ``similarity hypothesis'', which asserts that under a variety of physical circumstances solutions of these theories will naturally evolve to a self-similar form. We will find there is good evidence for this in the context of both spatially homogenous and inhomogeneous cosmological models, although in some cases the self-similar model is only an intermediate attractor. There are also a wide variety of situations, including critical pheneomena, in which spherically symmetric models tend towards self-similarity. However, this does not happen in all cases and it is it is important to understand the prerequisites for the conjecture.Comment: to be submitted to Gen. Rel. Gra

    Gluon polarization in the nucleon from quasi-real photoproduction of high-pT hadron pairs

    Get PDF
    We present a determination of the gluon polarization Delta G/G in the nucleon, based on the helicity asymmetry of quasi-real photoproduction events, Q^2<1(GeV/c)^2, with a pair of large transverse-momentum hadrons in the final state. The data were obtained by the COMPASS experiment at CERN using a 160 GeV polarized muon beam scattered on a polarized 6-LiD target. The helicity asymmetry for the selected events is = 0.002 +- 0.019(stat.) +- 0.003(syst.). From this value, we obtain in a leading-order QCD analysis Delta G/G=0.024 +- 0.089(stat.) +- 0.057(syst.) at x_g = 0.095 and mu^2 =~ 3 (GeV}/c)^2.Comment: 10 pages, 3 figure

    The Deuteron Spin-dependent Structure Function g1d and its First Moment

    Get PDF
    We present a measurement of the deuteron spin-dependent structure function g1d based on the data collected by the COMPASS experiment at CERN during the years 2002-2004. The data provide an accurate evaluation for Gamma_1^d, the first moment of g1d(x), and for the matrix element of the singlet axial current, a0. The results of QCD fits in the next to leading order (NLO) on all g1 deep inelastic scattering data are also presented. They provide two solutions with the gluon spin distribution function Delta G positive or negative, which describe the data equally well. In both cases, at Q^2 = 3 (GeV/c)^2 the first moment of Delta G is found to be of the order of 0.2 - 0.3 in absolute value.Comment: fits redone using MRST2004 instead of MRSV1998 for G(x), correlation matrix adde

    A new measurement of the Collins and Sivers asymmetries on a transversely polarised deuteron target

    Get PDF
    New high precision measurements of the Collins and Sivers asymmetries of charged hadrons produced in deep-inelastic scattering of muons on a transversely polarised 6LiD target are presented. The data were taken in 2003 and 2004 with the COMPASS spectrometer using the muon beam of the CERN SPS at 160 GeV/c. Both the Collins and Sivers asymmetries turn out to be compatible with zero, within the present statistical errors, which are more than a factor of 2 smaller than those of the published COMPASS results from the 2002 data. The final results from the 2002, 2003 and 2004 runs are compared with naive expectations and with existing model calculations.Comment: 40 pages, 28 figure

    Measurement of the Spin Structure of the Deuteron in the DIS Region

    Full text link
    We present a new measurement of the longitudinal spin asymmetry A_1^d and the spin-dependent structure function g_1^d of the deuteron in the range 1 GeV^2 < Q^2 < 100 GeV^2 and 0.004< x <0.7. The data were obtained by the COMPASS experiment at CERN using a 160 GeV polarised muon beam and a large polarised 6-LiD target. The results are in agreement with those from previous experiments and improve considerably the statistical accuracy in the region 0.004 < x < 0.03.Comment: 10 pages, 6 figures, subm. to PLB, revised: author list, Fig. 4, details adde
    corecore