10 research outputs found

    Recent Progress at LBNL on Characterization of Laser WakefieldAccelerated Electron Bunches using Coherent Transition Radiation

    Get PDF
    At LBNL, laser wakefield accelerators (LWFA) can now produce ultra-short electron bunches with energies up to 1 GeV [1]. As femtosecond electron bunches exit the plasma they radiate an intense burst in the terahertz range [2,3] via coherent transition radiation (CTR). Measuring the CTR properties allows non-invasive bunchlength diagnostics [4], a key to continuing rapid advance in LWFA technology. Experimental bunch length characterization for two different energy regimes through bolometric analysis and electro-optic (EO) sampling are presented. Measurements demonstrate both shot-to-shot stability of bunch parameters, and femtosecond synchronization between the bunch, the THz pulse, and the laser beam. In addition, this method of CTR generation provides THz pulses of very high peak power suitable for applications. Recent results reveal LWFA to be a promising intense ultrafast THz source

    Stable Electron Beams With Low Absolute Energy Spread From a LaserWakefield Accelerator With Plasma Density Ramp Controlled Injection

    Get PDF
    Laser wakefield accelerators produce accelerating gradientsup to hundreds of GeV/m, and recently demonstrated 1-10 MeV energy spreadat energies up to 1 GeV using electrons self-trapped from the plasma.Controlled injection and staging may further improve beam quality bycircumventing tradeoffs between energy, stability, and energyspread/emittance. We present experiments demonstrating production of astable electron beam near 1 MeV with hundred-keV level energy spread andcentral energy stability by using the plasma density profile to controlselfinjection, and supporting simulations. Simulations indicate that suchbeams can be post accelerated to high energies,potentially reducingmomentum spread in laser acceleratorsby 100-fold or more

    Progress on laser plasma accelerator development using transverselyand longitudinally shaped plasmas

    Get PDF
    A summary of progress at Lawrence Berkeley National Laboratory is given on: (1) experiments on down-ramp injection; (2) experiments on acceleration in capillary discharge plasma channels; and (3) simulations of a staged laser wakefield accelerator (LWFA). Control of trapping in a LWFA using plasma density down-ramps produced electron bunches with absolute longitudinal and transverse momentum spreads more than ten times lower than in previous experiments (0.17 and 0.02 MeV Ic FWHM, respectively) and with central momenta of 0.76 +- 0.02 MeV Ic, stable over a week of operation. Experiments were also carried out using a 40 TW laser interacting with a hydrogen-filled capillary discharge waveguide. For a 15 mm long, 200 mu m diameter capillary, quasi-monoenergetic bunches up to 300 MeV were observed. By detuning discharge delay from optimum guiding performance, self-trapping was found to be stabilized. For a 33 mm long, 300 mu m capillary, a parameter regime with high energy bunches, up to 1 Ge V, was found. In this regime, peak electron energy was correlated with the amount of trapped charge. Simulations show that bunches produced on a down-ramn and iniected into a channel-guided LWFA can produce stable beams with 0.2 MeV Ic-class momentum spread at high energies

    Combining Metaheuristics and Exact Algorithms in Combinatorial Optimization: A Survey and Classification

    No full text
    International audienceIn this survey we discuss different state-of-the-art approaches of combining exact algorithms and metaheuristics to solve combinatorial optimization problems. Some of these hybrids mainly aim at providing optimal solutions in shorter time, while others primarily focus on getting better heuristic solutions. The two main categories in which we divide the approaches are collaborative versus integrative combinations. We further classify the different techniques in a hierarchical way. Altogether, the surveyed work on combinations of exact algorithms and metaheuristics documents the usefulness and strong potential of this research direction
    corecore