1,057 research outputs found

    On the strange quark mass with improved staggered quarks

    Get PDF
    We present results on the sum of the masses of light and strange quark using improved staggered quarks. Our calculation uses 2+1 flavours of dynamical quarks. The effects of the dynamical quarks are clearly visible.Comment: Lattice2002(spectrum) Latex 3 pages, 2 figure

    Hybridomas making anti-hCG antibodies

    Get PDF

    The phase transition in QCD with broken SU(2) flavour symmetry

    Get PDF
    We report the first investigation of the QCD transition temperature, T_c, for two flavours of staggered quarks with unequal masses at lattice spacings of 1/4T. On changing the u/d quark mass ratio in such a way that m(pi_0)^2/m(pi_+)^2 changes from 1 to 0.78, thus bracketing the physical value of this ratio, we find that T_c remains unchanged in units of both m_rho and Lambda_MSbar.Comment: 12 pages, 5 figure

    Improving Lattice Quark Actions

    Get PDF
    We explore the first stage of the Symanzik improvement program for lattice Dirac fermions, namely the construction of doubler-free, highly improved classical actions on isotropic as well as anisotropic lattices (where the temporal lattice spacing, a_t, is smaller than the spatial one). Using field transformations to eliminate doublers, we derive the previously presented isotropic D234 action with O(a^3) errors, as well as anisotropic D234 actions with O(a^4) or O(a_t^3, a^4) errors. Besides allowing the simulation of heavy quarks within a relativistic framework, anisotropic lattices alleviate potential problems due to unphysical branches of the quark dispersion relation (which are generic to improved actions), facilitate studies of lattice thermodynamics, and allow accurate mass determinations for particles with bad signal/noise properties, like glueballs and P-state mesons. We also show how field transformations can be used to completely eliminate unphysical branches of the dispersion relation. Finally, we briefly discuss future steps in the improvement program.Comment: Tiny changes to agree with version to appear in Nucl. Phys. B (33 pages, LaTeX, 13 eps files

    Self-trapping transition for nonlinear impurities embedded in a Cayley tree

    Full text link
    The self-trapping transition due to a single and a dimer nonlinear impurity embedded in a Cayley tree is studied. In particular, the effect of a perfectly nonlinear Cayley tree is considered. A sharp self-trapping transition is observed in each case. It is also observed that the transition is much sharper compared to the case of one-dimensional lattices. For each system, the critical values of χ\chi for the self-trapping transitions are found to obey a power-law behavior as a function of the connectivity KK of the Cayley tree.Comment: 6 pages, 7 fig

    One-loop matching coefficients for improved staggered bilinears

    Get PDF
    We calculate one-loop matching factors for bilinear operators composed of improved staggered fermions. We compare the results for different improvement schemes used in the recent literature, all of which involve the use of smeared links. These schemes aim to reduce, though not completely eliminate, O(a^2) discretization errors. We find that all these improvement schemes substantially reduce the size of matching factors compared to unimproved staggered fermions. The resulting corrections are comparable to, or smaller than, those found with Wilson and domain-wall fermions. In the best case (``Fat-7'' and mean-field improved HYP links) the corrections are 10 % or smaller at 1/a = 2 GeV.Comment: 13 pages, 1 figure (misleading sentence in sec. II removed; version to appear in Physical Review D

    Heavy-light mesons with staggered light quarks

    Get PDF
    We demonstrate the viability of improved staggered light quarks in studies of heavy-light systems. Our method for constructing heavy-light operators exploits the close relation between naive and staggered fermions. The new approach is tested on quenched configurations using several staggered actionsn combined with nonrelativistic heavy quarks. The B_s meson kinetic mass, the hyperfine and 1P-1S splittings in B_s, and the decay constant f_{B_s} are calculated and compared to previous quenched lattice studies. An important technical detail, Bayesian curve-fitting, is discussed at length.Comment: 38 pages, figures included. v2: Entry in Table IX corrected and other minor changes, version appearing in Phys. Rev.

    Scale Setting in QCD and the Momentum Flow in Feynman Diagrams

    Get PDF
    We present a formalism to evaluate QCD diagrams with a single virtual gluon using a running coupling constant at the vertices. This method, which corresponds to an all-order resummation of certain terms in a perturbative series, provides a description of the momentum flow through the gluon propagator. It can be viewed as a generalization of the scale-setting prescription of Brodsky, Lepage and Mackenzie to all orders in perturbation theory. In particular, the approach can be used to investigate why in some cases the ``typical'' momenta in a loop diagram are different from the ``natural'' scale of the process. It offers an intuitive understanding of the appearance of infrared renormalons in perturbation theory and their connection to the rate of convergence of a perturbative series. Moreover, it allows one to separate short- and long-distance contributions by introducing a hard factorization scale. Several applications to one- and two-scale problems are discussed in detail.Comment: eqs.(51) and (83) corrected, minor typographic changes mad

    Nucleon Axial Form Factor from Lattice QCD

    Full text link
    Results for the isovector axial form factors of the proton from a lattice QCD calculation are presented for both point-split and local currents. They are obtained on a quenched 163×2416^{3} \times 24 lattice at β=6.0\beta= 6.0 with Wilson fermions for a range of quark masses from strange to charm. We determine the finite lattice renormalization for both the local and point-split currents of heavy quarks. Results extrapolated to the chiral limit show that the q2q^2 dependence of the axial form factor agrees reasonably well with experiment. The axial coupling constant gAg_A calculated for the local and the point-split currents is about 6\% and 12\% smaller than the experimental value respectively.Comment: 8 pages, 5 figures (included in part 2), UK/93-0

    Genetic determinants of cellular addiction to DNA polymerase theta

    Get PDF
    Polymerase theta (Pol θ, gene name Polq) is a widely conserved DNA polymerase that mediates a microhomology-mediated, error-prone, double strand break (DSB) repair pathway, referred to as Theta Mediated End Joining (TMEJ). Cells with homologous recombination deficiency are reliant on TMEJ for DSB repair. It is unknown whether deficiencies in other components of the DNA damage response (DDR) also result in Pol θ addiction. Here we use a CRISPR genetic screen to uncover 140 Polq synthetic lethal (PolqSL) genes, the majority of which were previously unknown. Functional analyses indicate that Pol θ/TMEJ addiction is associated with increased levels of replication-associated DSBs, regardless of the initial source of damage. We further demonstrate that approximately 30% of TCGA breast cancers have genetic alterations in PolqSL genes and exhibit genomic scars of Pol θ/TMEJ hyperactivity, thereby substantially expanding the subset of human cancers for which Pol θ inhibition represents a promising therapeutic strategy
    • …
    corecore