896 research outputs found

    All-optical thermal microscopy of laser-excited waveguides

    Get PDF
    We report on a unique combination of high-resolution confocal microscopy and ratiometric luminescence thermometry to obtain thermal images of 800 nm pumped ultrafast laser-inscribed waveguides in a Nd:YAG crystal. Thermal images evidence a strong localization of thermal load in the waveguide active volume. Comparison between experimental data and numerical simulations reveals that ultrafast laser-inscribed damage tracks in Nd:YAG crystals behave both as low-index and low-thermal conductivity barriersThis work was supported by the Spanish Ministerio de Economía y Competitividad (MINECO) under grants MAT2013-47395-C4-1-R and FIS2013-44174-P and from Junta de Castilla y León (Project SA116U13, UIC016

    Two-photon luminescence thermometry: towards 3D high-resolution thermal imaging of waveguides

    Full text link
    We report on the use of the Erbium-based luminescence thermometry to realize high resolution, three dimensional (3D) thermal imaging of optical waveguides. Proof of concept is demonstrated in a 980-nm laser pumped ultrafast laser inscribed waveguide in Er:Yb phosphate glass. Multi-photon microscopy images revealed the existence of well confined intra-waveguide temperature increments as large as 200°C for moderate 980-nm pump powers of 120 mW. Numerical simulations and experimental data reveal that thermal loading can be substantially reduced if pump events are separated more than the characteristic thermal time that for the waveguides investigated is in the millisecond time scaleThis work has been supported by the Ministerio de Economía y Competitividad of Spain (MINECO) (FIS2013-44174-P, MAT2013-47395-C4-1-R) and National Natural Science Foundation of China (NSFC) (11274203

    A_4 flavour symmetry breaking scheme for understanding quark and neutrino mixing angles

    Full text link
    We propose a spontaneous A_4 flavour symmetry breaking scheme to understand the observed pattern of quark and neutrino mixing. The fermion mass eigenvalues are arbitrary, but the mixing angles are constrained in such a way that the overall patterns are explained while also leaving sufficient freedom to fit the detailed features of the observed values, including CP violating phases. The scheme realises the proposal of Low and Volkas to generate zero quark mixing and tribimaximal neutrino mixing at tree-level, with deviations from both arising from small corrections after spontaneous A_4 breaking. In the neutrino sector, the breaking is A_4 --> Z_2, while in the quark and charged-lepton sectors it is A_4 --> Z_3 = C_3. The full theory has A_4 completely broken, but the two different unbroken subgroups in the two sectors force the dominant mixing patterns to be as stated above. Radiative effects within each sector are shown to deviate neutrino mixing from tribimaximal, while maintaining zero quark mixing. Interactions between the two sectors -- "cross-talk" -- induce nonzero quark mixing, and additional deviation from tribimaximal neutrino mixing. We discuss the vacuum alignment challenge the scenario faces, and suggest three generic ways to approach the problem. We follow up one of those ways by sketching how an explicit model realising the symmetry breaking structure may be constructed.Comment: 14 pages, no figures; v3: Section 5 rewritten to correct an error; new section added to the appendix; added references; v4: minor change to appendix C, version to be published by JHE

    An experimental and computational investigation of structure and magnetism in pyrite Co1x_{1-x}Fex_xS2_2: Chemical bonding and half-metallicity

    Full text link
    Bulk samples of the pyrite chalcogenide solid solutions Co1x_{1-x}Fex_xS2_2 0 <= x <= 0.5, have been prepared and their crystal structures and magnetic properties studied by X-ray diffraction and SQUID magnetization measurements. Across the solution series, the distance between sulfur atoms in the persulfide (S22_2^{2-}) unit remains nearly constant. First principles electronic structure calculations using experimental crystal structures as inputs point to the importance of this constant S-S distance, in helping antibonding S-S levels pin the Fermi energy. In contrast hypothetical rock-salt CoS is not a good half metal, despite being nearly isostructural and isoelectronic. We use our understanding of the Co1x_{1-x}Fex_xS2_2 system to make some prescriptions for new ferromagnetic half-metals.Comment: 8 pages including 9 figure

    Thermal Unparticles: A New Form of Energy Density in the Universe

    Full text link
    Unparticle \U with scaling dimension d_\U has peculiar thermal properties due to its unique phase space structure. We find that the equation of state parameter \omega_\U, the ratio of pressure to energy density, is given by 1/(2d_\U +1) providing a new form of energy in our universe. In an expanding universe, the unparticle energy density \rho_\U(T) evolves dramatically differently from that for photons. For d_\U >1, even if \rho_\U(T_D) at a high decoupling temperature TDT_D is very small, it is possible to have a large relic density \rho_\U(T^0_\gamma) at present photon temperature Tγ0T^0_\gamma, large enough to play the role of dark matter. We calculate TDT_D and \rho_\U(T^0_\gamma) using photon-unparticle interactions for illustration.Comment: 5 pages; v3, journal version

    Vanishing Effective Mass of the Neutrinoless Double Beta Decay?

    Full text link
    We stress that massive neutrinos may be Majorana particles even if the effective mass of the neutrinoless double beta decay m_ee vanishes. We show that current neutrino oscillation data do allow m_ee = 0 to hold, if the Majorana CP-violating phases lie in two specific regions. Strong constraints on three neutrino masses can then be obtained. We find that the neutrino mass spectrum performs a normal hierarchy: m_1 < m_2 < m_3. A possible texture of the neutrino mass matrix is also illustrated under the m_ee = 0 condition.Comment: RevTex 9 pages (2 PS figures included). More discussions and references added. Results partly changed. To appear in Phys. Rev.

    New Source of CP violation in B physics ?

    Full text link
    In this talk we discuss how the down type left-right squark mixing in Supersymmetry can induce a new source of CP violation in the time dependent asymmtries in B --> phi K process. We use QCD improved factorization process to calculate the hadronic matrix element for the process and find the allowed parameter space for ρ\rho and ϕ\phi , the magnitude and phase of the down type LR(RL) squark mixing parameter δLR(RL)bs\delta^{bs}_{LR(RL)}. In the same allowed regin we calculate the expected CP asymmtries in the BϕKB \to \phi K^{*} process.Comment: 16 pages, Latex, 2 postscript figures, invited talk presented by N.G. Deshpande at the 9th Adriatic meeting, Dubrovnik, Croatia, 4-14 September, 2003. With updated reference

    Can there be any new physics in b -> d penguins

    Full text link
    We analyze the possibility of observing new physics effects in the bdb \to d penguin amplitudes. For this purpose, we consider the decay mode BK0Kˉ0B \to K^0 \bar K^0 , which has only bdb \to d penguin contributions. Using the QCD factorization approach, we find very tiny CP violating effects in the standard model for this process. Furthermore, we show that the minimal supersymmetric standard model with LRLR mass insertion and R-parity violating supersymmetric model can provide substantial CP violation effects. Observation of sizable CP violation in this mode would be a clear signal of new physics.Comment: Published versio

    The Spectra of Heterotic Standard Model Vacua

    Get PDF
    A formalism for determining the massless spectrum of a class of realistic heterotic string vacua is presented. These vacua, which consist of SU(5) holomorphic bundles on torus-fibered Calabi-Yau threefolds with fundamental group Z_2, lead to low energy theories with standard model gauge group (SU(3)_C x SU(2)_L x U(1)_Y)/Z_6 and three families of quarks and leptons. A methodology for determining the sheaf cohomology of these bundles and the representation of Z_2 on each cohomology group is given. Combining these results with the action of a Z_2 Wilson line, we compute, tabulate and discuss the massless spectrum.Comment: 41+1pp, 2 fig

    Spatiotemporally localized solitons in resonantly absorbing Bragg reflectors

    Full text link
    We predict the existence of spatiotemporal solitons (``light bullets'') in two-dimensional self-induced transparency media embedded in a Bragg grating. The "bullets" are found in an approximate analytical form, their stability being confirmed by direct simulations. These findings suggest new possibilities for signal transmission control and self-trapping of light.Comment: RevTex, 3 pages, 2 figures, to be published in PR
    corecore