104 research outputs found

    Three-flavor solar neutrino oscillations with terrestrial neutrino constraints

    Get PDF
    We present an updated analysis of the current solar neutrino data in terms of three-flavor oscillations, including the additional constraints coming from terrestrial neutrino oscillation searches at the CHOOZ (reactor), Super-Kamiokande (atmospheric), and KEK-to-Kamioka (accelerator) experiments. The best fit is reached for the subcase of two-family mixing, and the additional admixture with the third neutrino is severely limited. We discuss the relevant features of the globally allowed regions in the oscillation parameter space, as well as their impact on the amplitude of possible CP-violation effects at future accelerator experiments and on the reconstruction accuracy of the mass-mixing oscillation parameters at the KamLAND reactor experiment.Comment: 10 pages + 8 figure

    Quasi-energy-independent solar neutrino transitions

    Get PDF
    Current solar, atmospheric, and reactor neutrino data still allow oscillation scenarios where the squared mass differences are all close to 10^-3 eV^2, rather than being hierarchically separated. For solar neutrinos, this situation (realized in the upper part of the so-called large-mixing angle solution) implies adiabatic transitions which depend weakly on the neutrino energy and on the matter density, as well as on the ``atmospheric'' squared mass difference. In such a regime of ``quasi-energy-independent'' (QEI) transitions, intermediate between the more familiar ``Mikheyev-Smirnov-Wolfenstein'' (MSW) and energy-independent (EI) regimes, we first perform analytical calculations of the solar nu_e survival probability at first order in the matter density, beyond the usual hierarchical approximations. We then provide accurate, generalized expressions for the solar neutrino mixing angles in matter, which reduce to those valid in the MSW, QEI and EI regimes in appropriate limits. Finally, a representative QEI scenario is discussed in some detail.Comment: Title changed; text and acronyms revised; results unchanged. To appear in PR

    On the Size of the Dark Side of the Solar Neutrino Parameter Space

    Get PDF
    We present an analysis of the MSW neutrino oscillation solutions of the solar neutrino problem in the framework of two-neutrino mixing in the enlarged parameter space (Δm2,tan2θ)(\Delta m^2, \tan^2\theta) with θ(0,π2)\theta \in (0,\frac{\pi}{2}). Recently, it was pointed out that the allowed region of parameters from a fit to the measured total rates can extend to values θπ4\theta \geq \frac{\pi}{4} (the so called ``dark side'') when higher confidence levels are allowed. The purpose of this letter is to reanalize the problem including all the solar neutrino data available, to discuss the dependence on the statistical criteria in the determination of the CL of the ``dark side'' and to extract the corresponding limits on the largest mixing allowed by the data. Our results show that when the Super-Kamiokande data on the zenith angle distribution of events and the spectrum information is included, the regions extend more into the dark side.Comment: 5 pages,latex file using RevTex. Two-layer aproximation for the Earth density replaced by numerical integration with PREM. Latest parametrization of the sun matter density (BP2000) is included. Misprints corrected. Conclusions unchanged. 5 postscript figures (bitmapped for compression). A full version of the paper can be found at http://ific.uv.es/~penya/papers/ To appear in Phys. Rev.

    Solar neutrino oscillations and indications of matter effects in the Sun

    Get PDF
    Assuming the current best-fit solutions to the solar neutrino problem at large mixing angle, we briefly illustrate how prospective data from the Sudbury Neutrino Observatory (SNO) and from the Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) can increase our confidence in the occurrence of standard matter effects on active neutrino flavor oscillations in the Sun, which are starting to emerge from current data.Comment: Updated to include the first KamLAND data. One figure adde

    Solar neutrino event spectra: Tuning SNO to equalize Super-Kamiokande

    Get PDF
    The Super-Kamiokande (SK) and the Sudbury Neutrino Observatory (SNO) experiments are monitoring the flux of B solar neutrinos through the electron energy spectrum from the reactions nu_{e,mu,tau} + e --> nu_{e,mu,tau} + e and nu_e + d --> p + p + e, respectively. We show that the SK detector response to B neutrinos in each bin of the electron energy spectrum (above 8 MeV) can be approximated, with good accuracy, by the SNO detector response in an appropriate electron energy range (above 5.1 MeV). For instance, the SK response in the bin [10,10.5] MeV is reproduced (``equalized'') within 2 percent by the SNO response in the range [7.1,11.75] MeV. As a consequence, in the presence of active neutrino oscillations, the SK and SNO event rates in the corresponding energy ranges turn out to be linearly related, for any functional form of the oscillation probability. Such equalization is not spoiled by the possible contribution of hep neutrinos (within current phenomenological limits). In perspective, when the SK and the SNO spectra will both be measured with high accuracy, the SK-SNO equalization can be used to determine the absolute B neutrino flux, and to cross-check the (non)observation of spectral deviations in SK and SNO. At present, as an exercise, we use the equalization to ``predict'' the SNO energy spectrum, on the basis of the current SK data. Finally, we briefly discuss some modifications or limitations of our results in the case of sterile neutrino oscillations and of relatively large Earth matter effects.Comment: 18 pages + 6 figure

    Implications of recent solar neutrino observations: an analysis of charged current data

    Full text link
    We have analysed the recent results from the observation of charged current \nu_e d \to e^- p p events from solar neutrinos by the Sudbury Neutrino Observatory SNO assuming neutrino oscillations with three active flavours. The data seem to prefer a low mass-squared difference and large mixing angle solution (the so-called LOW solution) in (12) parameter space. However, when combined with the Gallium charged current interaction data from Gallex and GNO, distinct (1\sigma) allowed regions corresponding to the large mixing angle (LMA) and small mixing angle (SMA) appear while the LOW solution is disfavoured upto 3\sigma standard deviation. The physical electron neutrino survival probability corresponding to these best fit solutions are then determined and analysed for their energy dependence.Comment: 16 pages Latex file, with 5 epsf figures; one reference adde

    Constraints on Neutrino Parameters from Neutral-Current Solar Neutrino Measurements

    Full text link
    We generalize the pull approach to define the χ2\chi^2 function to the analysis of the data with correlated statistical errors. We apply this method to the analysis of the Sudbury Neutrino Collaboration data obtained in the salt-phase. In the global analysis of all the solar neutrino and KamLAND data we find the best fit (minimum χ2\chi^2) values of neutrino parameters to be tan2θ120.42\tan^2 \theta_{12} \sim 0.42 and δm1227.1×105\delta m_{12}^2 \sim 7.1 \times 10^{-5} eV2^2. We confirm that the maximal mixing is strongly disfavored while the bounds on δm122\delta m_{12}^2 are significantly strengthened.Comment: 6 figures. Some typos are corrected, figures are visually improve

    Energy Independent Solution to the Solar Neutrino Anomaly including the SNO data

    Get PDF
    The global data on solar neutrino rates and spectrum, including the SNO charged current rate, can be explained by LMA, LOW or the energy independent solution -- corresponding to near-maximal mixing. All the three favour a mild upward renormalisation of the Cl rate. A mild downward shift of the BB neutrino flux is favoured by the energy independent and to a lesser extent the LOW solution, but not by LMA. Comparison with the ratio of SK elastic and SNO charged current scattering rates favours the LMA over the other two solutions, but by no more than 1.5σ1.5\sigma.Comment: 18 pages, latex, 3 figure

    Violation of the Equivalence Principle in the light of the SNO and SK solar neutrino results

    Get PDF
    The SNO result on charged current deuteron disintegration, the SuperKamiokande 1258-day data on electron scattering, and other solar neutrino results are used to revisit the model of neutrino oscillations driven by a violation of the equivalence principle. We use a chisq minimization technique to examine oscillation between the nu(e) and another active neutrino, both massless, and find that within the Standard Solar Model the fit to the SNO and SuperKamiokande spectra are moderately good while a very good fit is obtained when the absolute normalizations of the 8B and hep neutrino fluxes are allowed to vary. The best fit prefers large, but not maximal, mixing, essentially no hep neutrinos, and a 40% reduction in the 8B neutrino flux. The fit to the total rates from the different experiments is not encouraging but when the rates and spectra are considerd together the situation is much improved. We remark on the expectations of the VEP model for the neutral current measurements at SNO.Comment: Latex, 11 pages (incl. 1 postscript figure

    Solar Neutrino Rates, Spectrum, and its Moments : an MSW Analysis in the Light of Super-Kamiokande Results

    Get PDF
    We re-examine MSW solutions of the solar neutrino problem in a two flavor scenario taking (a) the results on total rates and the electron energy spectrum from the 1117-day SuperKamiokande (SK) data and (b) those on total rates from the Chlorine and Gallium experiments. We find that the SMA solution gives the best fit to the total rates data from the different experiments. One new feature of our analysis is the use of the moments of the SK electron spectrum in a χ2\chi^2 analysis. The best-fit to the moments is broadly in agreement with that obtained from a direct fit to the spectrum data and prefers a Δm2\Delta m^2 comparable to the SMA fit to the rates but the required mixing angle is larger. In the combined rate and spectrum analysis, apart from varying the normalization of the 8^8B flux as a free parameter and determining its best-fit value we also obtain the best-fit parameters when correlations between the rates and the spectrum data are included and the normalization of the 8^8B flux held fixed at its SSM value. We observe that the correlations between the rates and spectrum data are important and the goodness of fit worsens when these are included. In either case, the best-fit lies in the LMA region.Comment: 17 pages, 4 figure
    corecore