694 research outputs found
Can current reanalyses accurately portray changes in Southern Annular Mode structure prior to 1979?
Early reanalyses are less than optimal for investigating the regional effects of ozone depletion on Southern Hemisphere (SH) high-latitude climate because the availability of satellite sounder data from 1979 significantly improved their accuracy in data sparse regions, leading to a coincident inhomogeneity. To determine whether current reanalyses are better at SH high-latitudes in the pre-satellite era, here we examine the capabilities of the European Centre for Medium-range Weather Forecasts (ECMWF) fifth generation reanalysis (ERA5), the Twentieth Century Reanalysis version 3 (20CRv3), and the Japanese Meteorological Agency (JMA) 55-year reanalysis (JRA-55) to reproduce and help explain the pronounced change in the relationship between the Southern Annular Mode (SAM) and Antarctic near-surface air temperatures (SAT) between 1950 and 1979 (EARLY period) and 1980–2020 (LATE period). We find that ERA5 best reproduces Antarctic SAT in the EARLY period and is also the most homogeneous reanalysis across the EARLY and LATE periods. ERA5 and 20CRv3 provide a good representation of SAM in both periods with JRA-55 only similarly skilful in the LATE period. Nevertheless, all three reanalyses show the marked change in Antarctic SAM-SAT relationships between the two periods. In particular, ERA5 and 20CRv3 demonstrate the observed switch in the sign of the SAM-SAT relationship in the Antarctic Peninsula: analysis of changes in SAM structure and associated meridional wind anomalies reveal that in these reanalyses positive SAM is linked to cold southerly winds during the EARLY period and warm northerly winds in the LATE period, thus providing a simple explanation for the regional SAM-SAT relationship reversal
THE AMUNDSEN SEA LOW Variability, Change, and Impact on Antarctic Climate
The Amundsen Sea low (ASL) is a climatological low pressure center that exerts considerable influence on the climate of West Antarctica. Its potential to explain important recent changes in Antarctic climate, for example, in temperature and sea ice extent, means that it has become the focus of an increasing number of studies. Here, the authors summarize the current understanding of the ASL, using reanalysis datasets to analyze recent variability and trends, as well as ice-core chemistry and climate model projections, to examine past and future changes in the ASL, respectively. The ASL has deepened in recent decades, affecting the climate through its influence on the regional meridional wind field, which controls the advection of moisture and heat into the continent. Deepening of the ASL in spring is consistent with observed West Antarctic warming and greater sea ice extent in the Ross Sea. Climate model simulations for recent decades indicate that this deepening is mediated by tropical variability while climate model projections through the twenty-first century suggest that the ASL will deepen in some seasons in response to greenhouse gas concentration increases
Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system
Accepted versio
Density mismatch in thin diblock copolymer films
Thin films of diblock copolymer subject to gravitational field are simulated
by means of a cell dynamical system model. The difference in density of the two
sides of the molecule and the presence of the field causes the formation of
lamellar patterns with orientation parallel to the confining walls even when
they are neutral. The concentration profile of those films is analyzed in the
weak segregation regime and a functional form for the profile is proposed.Comment: 9 pages and 8 figures. Needs EPSF macros. Submitted to PR
A Behavioural Foundation for Natural Computing and a Programmability Test
What does it mean to claim that a physical or natural system computes? One
answer, endorsed here, is that computing is about programming a system to
behave in different ways. This paper offers an account of what it means for a
physical system to compute based on this notion. It proposes a behavioural
characterisation of computing in terms of a measure of programmability, which
reflects a system's ability to react to external stimuli. The proposed measure
of programmability is useful for classifying computers in terms of the apparent
algorithmic complexity of their evolution in time. I make some specific
proposals in this connection and discuss this approach in the context of other
behavioural approaches, notably Turing's test of machine intelligence. I also
anticipate possible objections and consider the applicability of these
proposals to the task of relating abstract computation to nature-like
computation.Comment: 37 pages, 4 figures. Based on an invited Talk at the Symposium on
Natural/Unconventional Computing and its Philosophical Significance, Alan
Turing World Congress 2012, Birmingham, UK.
http://link.springer.com/article/10.1007/s13347-012-0095-2 Ref. glitch fixed
in 2nd. version; Philosophy & Technology (special issue on History and
Philosophy of Computing), Springer, 201
Downregulation of a UDP-Arabinomutase Gene in Switchgrass (Panicum virgatum L.) Results in Increased Cell Wall Lignin While Reducing Arabinose-Glycans
Background: Switchgrass (Panicum virgatum L.) is a C4 perennial prairie grass and a dedicated feedstock for lignocellulosic biofuels. Saccharification and biofuel yields are inhibited by the plant cell wall’s natural recalcitrance against enzymatic degradation. Plant hemicellulose polysaccharides such as arabinoxylans structurally support and cross-link other cell wall polymers. Grasses predominately have Type II cell walls that are abundant in arabinoxylan, which comprise nearly 25% of aboveground biomass. A primary component of arabinoxylan synthesis is uridine diphosphate (UDP) linked to arabinofuranose (Araf). A family of UDP-arabinopyranose mutase (UAM)/reversible glycosylated polypeptides catalyze the interconversion between UDP-arabinopyranose (UDP-Arap) and UDP-Araf.
Results: The expression of a switchgrass arabinoxylan biosynthesis pathway gene, PvUAM1, was decreased via RNAi to investigate its role in cell wall recalcitrance in the feedstock. PvUAM1 encodes a switchgrass homolog of UDP-arabinose mutase, which converts UDP-Arap to UDP-Araf. Southern blot analysis revealed each transgenic line contained between one to at least seven T-DNA insertions, resulting in some cases, a 95% reduction of native PvUAM1 transcript in stem internodes. Transgenic plants had increased pigmentation in vascular tissues at nodes, but were otherwise similar in morphology to the non-transgenic control. Cell wall-associated arabinose was decreased in leaves and stems by over 50%, but there was an increase in cellulose. In addition, there was a commensurate change in arabinose side chain extension. Cell wall lignin composition was altered with a concurrent increase in lignin content and transcript abundance of lignin biosynthetic genes in mature tillers. Enzymatic saccharification efficiency was unchanged in the transgenic plants relative to the control.
Conclusion: Plants with attenuated PvUAM1 transcript had increased cellulose and lignin in cell walls. A decrease in cell wall-associated arabinose was expected, which was likely caused by fewer Araf residues in the arabinoxylan. The decrease in arabinoxylan may cause a compensation response to maintain cell wall integrity by increasing cellulose and lignin biosynthesis. In cases in which increased lignin is desired, e.g., feedstocks for carbon fiber production, downregulated UAM1 coupled with altered expression of other arabinoxylan biosynthesis genes might result in even higher production of lignin in biomass
The composition of the protosolar disk and the formation conditions for comets
Conditions in the protosolar nebula have left their mark in the composition
of cometary volatiles, thought to be some of the most pristine material in the
solar system. Cometary compositions represent the end point of processing that
began in the parent molecular cloud core and continued through the collapse of
that core to form the protosun and the solar nebula, and finally during the
evolution of the solar nebula itself as the cometary bodies were accreting.
Disentangling the effects of the various epochs on the final composition of a
comet is complicated. But comets are not the only source of information about
the solar nebula. Protostellar disks around young stars similar to the protosun
provide a way of investigating the evolution of disks similar to the solar
nebula while they are in the process of evolving to form their own solar
systems. In this way we can learn about the physical and chemical conditions
under which comets formed, and about the types of dynamical processing that
shaped the solar system we see today.
This paper summarizes some recent contributions to our understanding of both
cometary volatiles and the composition, structure and evolution of protostellar
disks.Comment: To appear in Space Science Reviews. The final publication is
available at Springer via http://dx.doi.org/10.1007/s11214-015-0167-
Some Consequences of Thermosolutal Convection: The Grain Structure of Castings
The essential principles of thermosolutal convection are outlined, and how convection provides a transport mechanism between the mushy region of a casting and the open bulk liquid is illustrated. The convective flow patterns which develop assist in heat exchange and macroscopic solute segregation during solidification; they also provide a mechanism for the transport of dendritic fragments from the mushy region into the bulk liquid. Surviving fragments become nuclei for equiaxed grains and so lead to blocking of the parental columnar, dendritic growth front from which they originated. The physical steps in such a sequence are considered and some experimental data are provided to support the argument
- …