106 research outputs found

    How to Make Large Domains of Disoriented Chiral Condensate

    Full text link
    Rajagopal and Wilczek have proposed that relativistic nuclear collisions can generate domains in which the chiral condensate is disoriented. If sufficiently large ({\it i.e.} nucleus sized), such domains can yield measurable fluctuations in the number of neutral and charged pions. However, by numerical simulation of the zero-temperature two-flavor linear sigma model, we find that domains are essentially {\it pion} sized. Nevertheless, we show that large domains can occur if the effective mesons masses are much lighter.Comment: 6 pages and 2 postscript figures, BNL-GGP-

    Possible scenarios for soft and semi-hard components structure in central hadron-hadron collisions in the TeV region

    Get PDF
    Possible scenarios in hh collisions in the TeV regions are discussed in full phase space. It is shown that at such high energies one should expect strong KNO scaling violation and a ln(s) increase of the average charged multiplicity of the semi-hard component, resulting in a huge mini-jet production.Comment: 20 pages, 9 PS figures included, LaTeX2e with AMSmath, epsfi

    Clan Properties in Parton Showers

    Full text link
    By considering clans as genuine elementary subprocesses, i.e., intermediate parton sources in the Simplified Parton Shower model, a generalized version of this model is defined. It predicts analytically clan properties at parton level in agreement with the general trends observed experimentally at hadronic level and in Monte Carlo simulations both at partonic and hadronic level. In particular the model shows a linear rising in rapidity of the average number of clans at fixed energy of the initial parton and its subsequent bending for rapidity intervals at the border of phase space, and approximate energy independence of the average number of clans in fixed rapidity intervals. The energy independence becomes stricter by properly normalizing the average number of clans.Comment: (27 pages in Plain TeX plus 10 Postscript Figures, all compressed via uufiles) DFTT 7/9

    Fractional Fokker-Planck Equation and Oscillatory Behavior of Cumulant Moments

    Full text link
    The Fokker-Planck equation is considered, which is connected to the birth and death process with immigration by the Poisson transform. The fractional derivative in time variable is introduced into the Fokker-Planck equation. From its solution (the probability density function), the generating function (GF) for the corresponding probability distribution is derived. We consider the case when the GF reduces to that of the negative binomial distribution (NBD), if the fractional derivative is replaced to the ordinary one. Formulas of the factorial moment and the HjH_j moment are derived from the GF. The HjH_j moment derived from the GF of the NBD decreases monotonously as the rank j increases. However, the HjH_j moment derived in our approach oscillates, which is contrasted with the case of the NBD. Calculated HjH_j moments are compared with those given from the data in ppˉp\bar{p} collisions and in e+ee^+e^- collisions.Comment: 10 pages, 8 figures, submitted to Phys. Rev.

    Percolation approach to quark gluon plasma in high energy pp collisions

    Full text link
    We apply continuum percolation to proton-proton collisions and look for the possible threshold to phase transition from confined nuclear matter to quark gluon plasma. Making the assumption that J/Psi suppression is a good signal to the transition, we discuss this phenomenon for pp collisions, in the framework of a dual model with strings.Comment: 8 pages, 3 figure

    Analyses of multiplicity distributions with \eta_c and Bose-Einstein correlations at LHC by means of generalized Glauber-Lachs formula

    Full text link
    Using the negative binomial distribution (NBD) and the generalized Glauber-Lachs (GGL) formula, we analyze the data on charged multiplicity distributions with pseudo-rapidity cutoffs \eta_c at 0.9, 2.36, and 7 TeV by ALICE Collaboration and at 0.2, 0.54, and 0.9 TeV by UA5 Collaboration. We confirm that the KNO scaling holds among the multiplicity distributions with \eta_c = 0.5 at \sqrt{s} = 0.2\sim2.36 TeV and estimate the energy dependence of a parameter 1/k in NBD and parameters 1/k and \gamma (the ratio of the average value of the coherent hadrons to that of the chaotic hadrons) in the GGL formula. Using empirical formulae for the parameters 1/k and \gamma in the GGL formula, we predict the multiplicity distributions with \eta_c = 0.5 at 7 and 14 TeV. Data on the 2nd order Bose-Einstein correlations (BEC) at 0.9 TeV by ALICE Collaboration and 0.9 and 2.36 TeV by CMS Collaboration are also analyzed based on the GGL formula. Prediction for the 3rd order BEC at 0.9 and 2.36 TeV are presented. Moreover, the information entropy is discussed

    Estimating the inelasticity with the information theory approach

    Get PDF
    Using the information theory approach, in both its extensive and nonextensive versions, we estimate the inelasticity parameter KK of hadronic reactions together with its distribution and energy dependence from ppˉp\bar{p} and pppp data. We find that the inelasticity remains essentially constant in energy except for a variation around K0.5K\sim 0.5, as was originally expected.Comment: 14 pages, 8 figures. Misprints correcte

    Multiplicity Studies and Effective Energy in ALICE at the LHC

    Full text link
    In this work we explore the possibility to perform ``effective energy'' studies in very high energy collisions at the CERN Large Hadron Collider (LHC). In particular, we focus on the possibility to measure in pppp collisions the average charged multiplicity as a function of the effective energy with the ALICE experiment, using its capability to measure the energy of the leading baryons with the Zero Degree Calorimeters. Analyses of this kind have been done at lower centre--of--mass energies and have shown that, once the appropriate kinematic variables are chosen, particle production is characterized by universal properties: no matter the nature of the interacting particles, the final states have identical features. Assuming that this universality picture can be extended to {\it ion--ion} collisions, as suggested by recent results from RHIC experiments, a novel approach based on the scaling hypothesis for limiting fragmentation has been used to derive the expected charged event multiplicity in AAAA interactions at LHC. This leads to scenarios where the multiplicity is significantly lower compared to most of the predictions from the models currently used to describe high energy AAAA collisions. A mean charged multiplicity of about 1000-2000 per rapidity unit (at η0\eta \sim 0) is expected for the most central PbPbPb-Pb collisions at sNN=5.5TeV\sqrt{s_{NN}} = 5.5 TeV.Comment: 12 pages, 19 figures. In memory of A. Smirnitski
    corecore