20 research outputs found

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Get PDF
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo's third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours-months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets. © 2022. The Author(s). Published by the American Astronomical Society

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF

    Construction and initial beam tests of the ATLAS tungsten forward calorimeter

    No full text
    Due to the severe radiation environment, the ATLAS experiment has chosen a compact tungsten/liquid argon forward hadronic calorimeter. The electrode design is unique and consists of hexagonally packed, tubular, thin gap electrodes running parallel to the beam direction. We describe the design criteria, the novel construction methods based on sintered tungsten components, and initial high energy beam tests at CERN

    Observation of events with a large rapidity gap in deep inelastic scattering at HERA

    Get PDF
    In deep inelastic, neutral current scattering of electrons and protons at √ s = 296 GeV, we observe in the ZEUS detector events with a large rapidity gap in the hadronic final state. They occur in the region of small Bjorken x and are observed up to Q<sup>2</sup> of 100 GeV<sup>2</sup>. They account for about 5% of the events with Q<sup>2</sup> ≥ 10 GeV<sup>2</sup>. Their general properties are inconsistent with the dominant mechanism of deep inelastic scattering, where color is transferred between the scattered quark and the proton remnant, and suggest that the underlying production mechanism is the diffractive dissociation of the virtual photon

    ATLAS: technical proposal for a general-purpose p p experiment at the large hadron collider at CERN

    No full text

    Search for Gravitational Waves Associated with Fast Radio Bursts Detected by CHIME/FRB During the LIGO--Virgo Observing Run O3a

    No full text
    We search for gravitational-wave transients associated with fast radio bursts (FRBs) detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project (CHIME/FRB), during the first part of the third observing run of Advanced LIGO and Advanced Virgo (1 April 2019 15:00 UTC-1 Oct 2019 15:00 UTC). Triggers from 22 FRBs were analyzed with a search that targets compact binary coalescences with at least one neutron star component. A targeted search for generic gravitational-wave transients was conducted on 40 FRBs. We find no significant evidence for a gravitational-wave association in either search. Given the large uncertainties in the distances of the FRBs inferred from the dispersion measures in our sample, however, this does not conclusively exclude any progenitor models that include emission of a gravitational wave of the types searched for from any of these FRB events. We report 90%90\% confidence lower bounds on the distance to each FRB for a range of gravitational-wave progenitor models. By combining the inferred maximum distance information for each FRB with the sensitivity of the gravitational-wave searches, we set upper limits on the energy emitted through gravitational waves for a range of emission scenarios. We find values of order 105110^{51}-105710^{57} erg for a range of different emission models with central gravitational wave frequencies in the range 70-3560 Hz. Finally, we also found no significant coincident detection of gravitational waves with the repeater, FRB 20200120E, which is the closest known extragalactic FRB

    ATLAS computing technical proposal

    No full text

    ATLAS computing technical proposal

    No full text
    corecore