667 research outputs found

    Alien invasive species: is the EU's strategy fit for purpose?

    Get PDF
    An analysis is provided of the EU's 2014 Regulation on the Prevention and Management of the Introduction and Spread of Invasive Alien Species by primarily addressing the extent to which it complies with international guidance

    Group areas and the ‘grey street’ complex, Durban

    Get PDF

    Linear instability and weakly nonlinear effects in eastward dipoles

    Get PDF
    The linear instability and weakly nonlinear dynamics of eastward-propagating, steady-state Larichev–Reznik vortex dipoles are explored in terms of two-dimensional normal-mode analysis. To extract the fastest growing normal modes, we apply both breeding methodology based on solving the initial-value problem, as well as a direct-solution approach through the full-spectrum eigenproblem involving large matrices. We find that the amplification rate of dipole instability decreases with respect to increase in dipole intensity. In our study, both approaches yield consistent results and are systematically compared to provide guidance for further studies of vortex structures. We consider nonlinear self-interaction of the fastest growing mode, along with the induced eddy fluxes, their divergence and mechanical energy balance. Through this analysis, we find that the unstable mode leads to weakening of the dipole by extracting its energy and exchanging potential vorticity content in the down-gradient sense, thus, providing a nonlinear physical mechanism for the dipole destruction. In particular, we highlight the fundamental importance of the west-east asymmetry of the normal mode for destruction to be realized. In summary, we consider this work to be a foundational demonstration of useful methodology for future studies of dynamics and stability of isolated vortices without simplifying spatial symmetries, such as ubiquitous vortices in geophysical fluids

    Dynamical modelling of the elliptical galaxy NGC 2974

    Full text link
    In this paper we analyse the relations between a previously described oblate Jaffe model for an ellipsoidal galaxy and the observed quantities for NGC 2974, and obtain the length and velocity scales for a relevant elliptical galaxy model. We then derive the finite total mass of the model from these scales, and finally find a good fit of an isotropic oblate Jaffe model by using the Gauss-Hermite fit parameters and the observed ellipticity of the galaxy NGC 2974. The model is also used to predict the total luminous mass of NGC 2974, assuming that the influence of dark matter in this galaxy on the image, ellipticity and Gauss-Hermite fit parameters of this galaxy is negligible within the central region, of radius 0.5Re.0.5R_{\rm e}.Comment: 7 figure

    Cosmological parameter estimation using Very Small Array data out to ℓ= 1500

    Get PDF
    We estimate cosmological parameters using data obtained by the Very Small Array (VSA) in its extended configuration, in conjunction with a variety of other cosmic microwave background (CMB) data and external priors. Within the flat Λ cold dark matter (ΛCDM) model, we find that the inclusion of high-resolution data from the VSA modifies the limits on the cosmological parameters as compared to those suggested by the Wilkinson Microwave Anisotropy Probe (WMAP) alone, while still remaining compatible with their estimates. We find that Ωbh2= 0.0234+0.0012−0.0014, Ωdmh2= 0.111+0.014−0.016, h= 0.73+0.09−0.05, nS= 0.97+0.06−0.03, 1010AS= 23+7−3 and τ= 0.14+0.14−0.07 for WMAP and VSA when no external prior is included. On extending the model to include a running spectral index of density fluctuations, we find that the inclusion of VSA data leads to a negative running at a level of more than 95 per cent confidence ( nrun=−0.069 ± 0.032 ), something that is not significantly changed by the inclusion of a stringent prior on the Hubble constant. Inclusion of prior information from the 2dF galaxy redshift survey reduces the significance of the result by constraining the value of Ωm. We discuss the veracity of this result in the context of various systematic effects and also a broken spectral index model. We also constrain the fraction of neutrinos and find that fÎœ < 0.087 at 95 per cent confidence, which corresponds to mÎœ < 0.32 eV when all neutrino masses are equal. Finally, we consider the global best fit within a general cosmological model with 12 parameters and find consistency with other analyses available in the literature. The evidence for nrun < 0 is only marginal within this model

    Development and external validation study of a melanoma risk prediction model incorporating clinically assessed naevi and solar lentigines

    Get PDF
    Background: Melanoma risk prediction models could be useful for matching preventive interventions to patients’ risk. Objectives: To develop and validate a model for incident first‐primary cutaneous melanoma using clinically assessed risk factors. Methods: We used unconditional logistic regression with backward selection from the Australian Melanoma Family Study (461 cases and 329 controls) in which age, sex and city of recruitment were kept in each step, and we externally validated it using the Leeds Melanoma Case–Control Study (960 cases and 513 controls). Candidate predictors included clinically assessed whole‐body naevi and solar lentigines, and self‐assessed pigmentation phenotype, sun exposure, family history and history of keratinocyte cancer. We evaluated the predictive strength and discrimination of the model risk factors using odds per age‐ and sex‐adjusted SD (OPERA) and the area under curve (AUC), and calibration using the Hosmer–Lemeshow test. Results: The final model included the number of naevi ≄ 2 mm in diameter on the whole body, solar lentigines on the upper back (a six‐level scale), hair colour at age 18 years and personal history of keratinocyte cancer. Naevi was the strongest risk factor; the OPERA was 3·51 [95% confidence interval (CI) 2·71–4·54] in the Australian study and 2·56 (95% CI 2·23–2·95) in the Leeds study. The AUC was 0·79 (95% CI 0·76–0·83) in the Australian study and 0·73 (95% CI 0·70–0·75) in the Leeds study. The Hosmer–Lemeshow test P‐value was 0·30 in the Australian study and < 0·001 in the Leeds study. Conclusions: This model had good discrimination and could be used by clinicians to stratify patients by melanoma risk for the targeting of preventive interventions. What's already known about this topic? Melanoma risk prediction models may be useful in prevention by tailoring interventions to personalized risk levels. For reasons of feasibility, time and cost many melanoma prediction models use self‐assessed risk factors. However, individuals tend to underestimate their naevus numbers. What does this study add? We present a melanoma risk prediction model, which includes clinically‐assessed whole‐body naevi and solar lentigines, and self‐assessed risk factors including pigmentation phenotype and history of keratinocyte cancer. This model performs well on discrimination, the model's ability to distinguish between individuals with and without melanoma, and may assist clinicians to stratify patients by melanoma risk for targeted preventive interventions

    Path Integral Monte Carlo Approach to the U(1) Lattice Gauge Theory in (2+1) Dimensions

    Get PDF
    Path Integral Monte Carlo simulations have been performed for U(1) lattice gauge theory in (2+1) dimensions on anisotropic lattices. We extractthe static quark potential, the string tension and the low-lying "glueball" spectrum.The Euclidean string tension and mass gap decrease exponentially at weakcoupling in excellent agreement with the predictions of Polyakov and G{\" o}pfert and Mack, but their magnitudes are five times bigger than predicted. Extrapolations are made to the extreme anisotropic or Hamiltonian limit, and comparisons are made with previous estimates obtained in the Hamiltonian formulation.Comment: 12 pages, 16 figure

    "Author! Author!" : Shakespeare and biography

    Get PDF
    Original article can be found at: http://www.informaworld.com/smpp/title~content=t714579626~db=all Copyright Informa / Taylor &amp; Francis Group. DOI: 10.1080/17450910902764454Since 1996, not a year has passed without the publication of at least one Shakespeare biography. Yet for many years the place of the author in the practice of understanding literary works has been problematized, and even on occasions eliminated. Criticism reads the “works”, and may or may not refer to an author whose “life” contributed to their meaning. Biography seeks the author in the works, the personality that precedes the works and gives them their characteristic shape and meaning. But the form of literary biography addresses the unusual kind of “life” that puts itself into “works”, and this is particularly challenging where the “works” predominate massively over the salient facts of the “life”. This essay surveys the current terrain of Shakespeare biography, and considers the key questions raised by the medium: can we know anything of Shakespeare's “personality” from the facts of his life and the survival of his works? What is the status of the kind of speculation that inevitably plays a part in biographical reconstruction? Are biographers in the end telling us as much about themselves as they tell us about Shakespeare?Peer reviewe
    • 

    corecore