13 research outputs found

    The ATLAS trigger system for LHC Run 3 and trigger performance in 2022

    Get PDF
    The ATLAS trigger system is a crucial component of the ATLAS experiment at the LHC. It is responsible for selecting events in line with the ATLAS physics programme. This paper presents an overview of the changes to the trigger and data acquisition system during the second long shutdown of the LHC, and shows the performance of the trigger system and its components in the proton-proton collisions during the 2022 commissioning period as well as its expected performance in proton-proton and heavy-ion collisions for the remainder of the third LHC data-taking period (2022–2025)

    Beam-induced backgrounds measured in the ATLAS detector during local gas injection into the LHC beam vacuum

    Get PDF
    Inelastic beam-gas collisions at the Large Hadron Collider (LHC), within a few hundred metres of the ATLAS experiment, are known to give the dominant contribution to beam backgrounds. These are monitored by ATLAS with a dedicated Beam Conditions Monitor (BCM) and with the rate of fake jets in the calorimeters. These two methods are complementary since the BCM probes backgrounds just around the beam pipe while fake jets are observed at radii of up to several metres. In order to quantify the correlation between the residual gas density in the LHC beam vacuum and the experimental backgrounds recorded by ATLAS, several dedicated tests were performed during LHC Run 2. Local pressure bumps, with a gas density several orders of magnitude higher than during normal operation, were introduced at different locations. The changes of beam-related backgrounds, seen in ATLAS, are correlated with the local pressure variation. In addition the rates of beam-gas events are estimated from the pressure measurements and pressure bump profiles obtained from calculations. Using these rates, the efficiency of the ATLAS beam background monitors to detect beam-gas events is derived as a function of distance from the interaction point. These efficiencies and characteristic distributions of fake jets from the beam backgrounds are found to be in good agreement with results of beam-gas simulations performed with theFluka Monte Carlo programme

    Electron and photon energy calibration with the ATLAS detector using LHC Run 2 data

    Get PDF
    This paper presents the electron and photon energy calibration obtained with the ATLAS detector using 140 fb-1 of LHC proton-proton collision data recorded at √(s) = 13 TeV between 2015 and 2018. Methods for the measurement of electron and photon energies are outlined, along with the current knowledge of the passive material in front of the ATLAS electromagnetic calorimeter. The energy calibration steps are discussed in detail, with emphasis on the improvements introduced in this paper. The absolute energy scale is set using a large sample of Z-boson decays into electron-positron pairs, and its residual dependence on the electron energy is used for the first time to further constrain systematic uncertainties. The achieved calibration uncertainties are typically 0.05% for electrons from resonant Z-boson decays, 0.4% at ET ∼ 10 GeV, and 0.3% at ET ∼ 1 TeV; for photons at ET ∼ 60 GeV, they are 0.2% on average. This is more than twice as precise as the previous calibration. The new energy calibration is validated using J/ψ → ee and radiative Z-boson decays

    Performance and calibration of quark/gluon-jet taggers using 140 fb−1 of pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    The identification of jets originating from quarks and gluons, often referred to as quark/gluon tagging, plays an important role in various analyses performed at the Large Hadron Collider, as Standard Model measurements and searches for new particles decaying to quarks often rely on suppressing a large gluon-induced background. This paper describes the measurement of the efficiencies of quark/gluon taggers developed within the ATLAS Collaboration, using √s = 13 TeV proton–proton collision data with an integrated luminosity of 140 fb-1 collected by the ATLAS experiment. Two taggers with high performances in rejecting jets from gluon over jets from quarks are studied: one tagger is based on requirements on the number of inner-detector tracks associated with the jet, and the other combines several jet substructure observables using a boosted decision tree. A method is established to determine the quark/gluon fraction in data, by using quark/gluon-enriched subsamples defined by the jet pseudorapidity. Differences in tagging efficiency between data and simulation are provided for jets with transverse momentum between 500 GeV and 2 TeV and for multiple tagger working points

    In vitro bond strengths and SEM evaluation of dentin bonding systems to different dentin substrates

    Get PDF
    In comparison to enamel, bonding to normal dentin is a greater challenge because of its organic constituents, fluid-filed tubules, and variations in intrinsic composition. Bonding to sclerotic dentin is even more difficult. To evaluate the shear bond strengths of four adhesive systems to dentin substrates with different levels of mineralization, 120 extracted human teeth were randomly assigned to three groups (n = 40). After mid-coronal dentin was exposed, groups of specimens were artificially hypermineralized by immersion in a remineralizing solution, demineralized by means of an acetic acid demineralizing solution, or stored in distilled water to model sclerotic, carious, and normal dentin, respectively. Resin composite was bonded to dentin by use of commercial adhesive systems. After the specimens were thermocycled, shear bond strengths were determined in an Instron universal testing machine. Dentin substrates and resin/dentin interfaces were examined by SEM. For each adhesive system, the mean shear bond strength to normal dentin was significantly higher than that to either of the other substrates. Shear bond strengths to hypermineralized dentin were significantly higher than those to demineralized dentin with all adhesives except Prisma Universal Bond

    Observation of gauge boson joint-polarisation states in W±Z production from pp collisions at s=13 TeV with the ATLAS detector

    Get PDF
    Measurements of joint-polarisation states of W and Z gauge bosons in W±Z production are presented. The data set used corresponds to an integrated luminosity of 139 fb−1 of proton–proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. The W±Z candidate events are reconstructed using leptonic decay modes of the gauge bosons into electrons and muons. The simultaneous pair-production of longitudinally polarised vector bosons is measured for the first time with a significance of 7.1 standard deviations. The measured joint helicity fractions integrated over the fiducial region are f00=0.067±0.010, f0T=0.110±0.029, fT0=0.179±0.023 and fTT=0.644±0.032, in agreement with the next-to-leading-order Standard Model predictions. Individual helicity fractions of the W and Z bosons are also measured and found to be consistent with joint helicity fractions within the expected amounts of correlation. Both the joint and individual helicity fractions are also measured separately in W+Z and W−Z events. Inclusive and differential cross sections for several kinematic observables sensitive to polarisation are presented

    Constraints on the Higgs boson self-coupling from single- and double-Higgs production with the ATLAS detector using pp collisions at s=13 TeV

    Get PDF
    Constraints on the Higgs boson self-coupling are set by combining double-Higgs boson analyses in the bb¯bb¯, bb¯τ+τ− and bb¯γγ decay channels with single-Higgs boson analyses targeting the γγ, ZZ⁎, WW⁎, τ+τ− and bb¯ decay channels. The data used in these analyses were recorded by the ATLAS detector at the LHC in proton–proton collisions at s=13 TeV and correspond to an integrated luminosity of 126–139 fb−1. The combination of the double-Higgs analyses sets an upper limit of μHH<2.4 at 95% confidence level on the double-Higgs production cross-section normalised to its Standard Model prediction. Combining the single-Higgs and double-Higgs analyses, with the assumption that new physics affects only the Higgs boson self-coupling (λHHH), values outside the interval −0.4<κλ=(λHHH/λHHHSM)<6.3 are excluded at 95% confidence level. The combined single-Higgs and double-Higgs analyses provide results with fewer assumptions, by adding in the fit more coupling modifiers introduced to account for the Higgs boson interactions with the other Standard Model particles. In this relaxed scenario, the constraint becomes −1.4<κλ<6.1 at 95% CL
    corecore