6 research outputs found

    Optical production and detection of dark matter candidates

    Get PDF
    The PVLAS collaboration is at present running, at the Laboratori Nazionali di Legnaro of I.N.F.N., Padova, Italy, a very sensitive optical ellipsometer capable of measuring the small rotations or ellipticities which can be acquired by a linearly polarized laser beam propagating in vacuum through a transverse magnetic feld (vacuum magnetic birefringence). The apparatus will also be able to set new limits on mass and coupling constant of light scalar/pseudoscalar particles coupling to two photons by both producing and detecting the hypothetical particles. The axion, introduced to explain parity conservation in strong interactions, is an example of this class of particles, all of which are considered possible dark matter candidates. The PVLAS apparatus consists of a very high finesse (> 140000), 6.4 m long, Fabry-Perot cavity immersed in an intense dipolar magnetic field (~6.5 T). A linearly polarized laser beam is frequency locked to the cavity and analysed, using a heterodyne technique, for rotation and/or ellipticity acquired within the magnetic field.Comment: presented at "Frontier Detectors for Frontier Physics - 8th Pisa Meeting on Advanced Detectors - May 21-27, 2000" to appear in: Nucl.Instr. and Meth.

    Measurement of focal spot size in a 5.5 MeV linac

    No full text
    High energy X-ray beams allow to perform analysis on different materials and objects of relevant interest that cannot be investigated with conventional X-ray sources. A 5.5 MeV endpoint energy bremsstrahlung source has been characterized by evaluating the size of X-ray emitting area. In order to perform a proper characterization, an ‘ad hoc’ slit-camera has been designed and a specific technique has been adopted. Due to the characteristics of the beam, a highly attenuating slit with variable aperture has been designed using Monte Carlo simulations of the X-ray beam and set up. Since the slit camera is far from the ideal model (negligible X-ray transmission and very thin aperture), a whole set of image profiles of the slit at different width sizes have been acquired and analyzed. Imaging correction procedures and data fitting lead to satisfactory experimental results according to the theoretical model

    Luminosity determination in pppp collisions at s=13\sqrt{s}=13 TeV using the ATLAS detector at the LHC

    Get PDF
    The luminosity determination for the ATLAS detector at the LHC during Run 2 is presented, with pppp collisions at s=13\sqrt{s}=13 TeV. The absolute luminosity scale is determined using van der Meer beam separation scans during dedicated running periods in each year, and extrapolated to the physics data-taking regime using complementary measurements from several luminosity-sensitive detectors. The total uncertainties in the integrated luminosities for each individual year of data-taking range from 0.9% to 1.1%, and are partially correlated between years. After standard data-quality selections, the full Run 2 pppp data sample corresponds to an integrated luminosity of 140.1±1.2140.1\pm 1.2 fb1^{-1}, i.e. an uncertainty of 0.83%. A dedicated sample of low-pileup data recorded in 2017-18 for precision Standard Model physics measurements is analysed separately, and has an integrated luminosity of 338.1±3.1338.1\pm 3.1 pb1^{-1}.The luminosity determination for the ATLAS detector at the LHC during Run 2 is presented, with pp collisions at a centre-of-mass energy s=13\sqrt{s}=13 TeV. The absolute luminosity scale is determined using van der Meer beam separation scans during dedicated running periods in each year, and extrapolated to the physics data-taking regime using complementary measurements from several luminosity-sensitive detectors. The total uncertainties in the integrated luminosity for each individual year of data-taking range from 0.9% to 1.1%, and are partially correlated between years. After standard data-quality selections, the full Run 2 pp data sample corresponds to an integrated luminosity of 140.1±1.2140.1\pm 1.2 fb1\hbox {fb}^{-1}, i.e. an uncertainty of 0.83%. A dedicated sample of low-pileup data recorded in 2017–2018 for precision Standard Model physics measurements is analysed separately, and has an integrated luminosity of 338.1±3.1338.1\pm 3.1 pb1\hbox {pb}^{-1}.The luminosity determination for the ATLAS detector at the LHC during Run 2 is presented, with pppp collisions at s=13\sqrt{s}=13 TeV. The absolute luminosity scale is determined using van der Meer beam separation scans during dedicated running periods in each year, and extrapolated to the physics data-taking regime using complementary measurements from several luminosity-sensitive detectors. The total uncertainties in the integrated luminosities for each individual year of data-taking range from 0.9% to 1.1%, and are partially correlated between years. After standard data-quality selections, the full Run 2 pppp data sample corresponds to an integrated luminosity of 140.1±1.2140.1\pm 1.2 fb1^{-1}, i.e. an uncertainty of 0.83%. A dedicated sample of low-pileup data recorded in 2017-18 for precision Standard Model physics measurements is analysed separately, and has an integrated luminosity of 338.1±3.1338.1\pm 3.1 pb1^{-1}
    corecore