137 research outputs found
EPR-Bell Nonlocality, Lorentz Invariance, and Bohmian Quantum Theory
We discuss the problem of finding a Lorentz invariant extension of Bohmian
mechanics. Due to the nonlocality of the theory there is (for systems of more
than one particle) no obvious way to achieve such an extension. We present a
model invariant under a certain limit of Lorentz transformations, a limit
retaining the characteristic feature of relativity, the non-existence of
absolute time resp. simultaneity. The analysis of this model exemplifies an
important property of any Bohmian quantum theory: the quantum equilibrium
distribution cannot simultaneously be realized in all
Lorentz frames of reference.Comment: 24 pages, LaTex, 4 figure
Decoherence and wave function collapse
The possibility of consistency between the basic quantum principles of
quantum mechanics and wave function collapse is reexamined. A specific
interpretation of environment is proposed for this aim and applied to
decoherence. When the organization of a measuring apparatus is taken into
account, this approach leads also to an interpretation of wave function
collapse, which would result in principle from the same interactions with
environment as decoherence. This proposal is shown consistent with the
non-separable character of quantum mechanics
Measurement-based quantum foundations
I show that quantum theory is the only probabilistic framework that permits
arbitrary processes to be emulated by sequences of local measurements. This
supports the view that, contrary to conventional wisdom, measurement should not
be regarded as a complex phenomenon in need of a dynamical explanation but
rather as a primitive -- and perhaps the only primitive -- operation of the
theory.Comment: 8 pages, version to appear in Found. Phy
Mapping the sites of latency and reactivation by bovine herpesvirus 5 (BoHV-5) and a thymidine kinase-deleted BoHV-5 in lambs
A thymidine kinase (tk)-deleted bovine herpesvirus 5 (BoHV-5tkΔ) was previously shown to establish latent infection and reactivate - even poorly - in a sheep model (Cadore et al. 2013). As TK-negative alphaherpesviruses are unlike to reactivate in neural tissue, this study investigated the sites of latency and reactivation by this recombinant in lambs. For this, groups of lambs were inoculated intranasally with the parental BoHV-5 strain (SV-507/99) or with the recombinant BoHV-5tkΔ. During latent infection (40 days post-inoculation, pi), the distribution of recombinant virus DNA in neural and non-neural tissues was similar to that of the parental virus. Parental and recombinant virus DNA was consistently detected by PCR in trigeminal ganglia (TGs); frequently in palatine and pharyngeal tonsils and, less frequently in the retropharyngeal lymph nodes. In addition, latent DNA of both viruses was detected in several areas of the brain. After dexamethasone (Dx) administration (day 40pi), the recombinant virus was barely detected in nasal secretions contrasting with marked shedding of the parental virus. In tissues of lambs euthanized at day 3 post-Dx treatment (pDx), reverse-transcription-PCR (RT-PCR) for a late viral mRNA (glycoprotein D gene) demonstrated reactivation of parental virus in neural (TGs) and lymphoid tissues (tonsils, lymph node). In contrast, recombinant virus mRNA was detected only in lymphoid tissues. These results demonstrate that BoHV-5 and the recombinant BoHV-5tkΔ do establish latent infection in neural and non-neural sites. Reactivation of the recombinant BoHV-5tkΔ, however, appeared to occur only in non-neural sites. In anyway, the ability of a tk-deleted strain to reactivate latent infection deserves attention in the context of vaccine safety
Physics with the KLOE-2 experiment at the upgraded DANE
Investigation at a --factory can shed light on several debated issues
in particle physics. We discuss: i) recent theoretical development and
experimental progress in kaon physics relevant for the Standard Model tests in
the flavor sector, ii) the sensitivity we can reach in probing CPT and Quantum
Mechanics from time evolution of entangled kaon states, iii) the interest for
improving on the present measurements of non-leptonic and radiative decays of
kaons and eta/eta mesons, iv) the contribution to understand the
nature of light scalar mesons, and v) the opportunity to search for narrow
di-lepton resonances suggested by recent models proposing a hidden dark-matter
sector. We also report on the physics in the continuum with the
measurements of (multi)hadronic cross sections and the study of gamma gamma
processes.Comment: 60 pages, 41 figures; added affiliation for one of the authors; added
reference to section
- …