1,338 research outputs found

    Leopoldo Lugones and Jorge Luis Borges on Science: The Garden of Forking Opinions

    Get PDF
    This paper attempts to show how the fantastic authors Leopoldo Lugones and Jorge Luis Borges expressed different viewpoints about science and technology through their short stories. These Argentine authors are among Latin America’s most famous authors in the genre of the fantastic. However, these two literary luminaries diverged greatly with regard to their opinion about the role of science in society. While Lugones considered scientific progress to a grave threat to the moral fabric and well-being of society, Borges believed that scientific theories underpin and intersect with a variety of different experiences and thus can serve as tools to explore human perception of reality. Textual analyses of two short stories clearly illustrate these stark differences. The opinion of Lugones is evident in the short story, “Viola acherontia” while that of Borges is well-defined in “El libro de arena.” In the end, Borges’ treatment of science proves quite versatile and in contrast to Lugones’ fears, has helped lead the way to solutions to problems facing modern society

    Million frames per second infrared imaging system

    Get PDF
    An infrared imaging system has been developed for measuring the temperature increase during the dynamic deformation of materials. The system consists of an 8×8 HgCdTe focal plane array, each with its own preamplifier. Outputs from the 64 detector/preamplifiers are digitized using a row-parallel scheme. In this approach, all 64 signals are simultaneously acquired and held using a bank of track and hold amplifiers. An array of eight 8:1 multiplexers then routes the signals to eight 10 MHz digitizers, acquiring data from each row of detectors in parallel. The maximum rate is one million frames per second. A fully reflective lens system was developed, consisting of two Schwarszchild objectives operating at infinite conjugation ratio. The ratio of the focal lengths of the objectives determines the lens magnification. The system has been used to image the distribution of temperature rise near the tip of a notch in a high strength steel sample (C-300) subjected to impact loading by a drop weight testing machine. The results show temperature rises at the crack tip up to around 70 K. Localization of temperature, and hence, of deformation into "U" shaped zones emanating from the notch tip is clearly seen, as is the onset of crack propagation

    Generating the Best Stacking Sequence Table for the Design of Blended Composite Structures

    Get PDF
    In order to improve the ability of a large-scale light-weight composite structure to carry tensile or compressive loads, stiffeners are added to the structure. The stiffeners divide the structure into several smaller panels. For a composite structure to be manufacturable, it is necessary that plies are continuous in multiple adjacent panels. To be able to prescribe a manufacturable design, an optimization algorithm can be coupled with a reference table for the stacking sequences (SST). As long as the ply stacks are selected from the SST, it is guaranteed that the design is manufacturable and all strength related guidelines associated with the design of composite structures are satisfied. An SST is made only based on strength related guidelines. Therefore, there exist a large number of possibilities for SSTs. Minimized mass is a typical goal in the design of aircraft structures. Different SSTs result in different values for the minimized mass. Thus it is crucial to perform optimization based on the SST which results in the lowest mass. This paper aims to introduce an approach to generate a unique SST resulting in the lowest mass. The proposed method is applied to the optimization problem of a stiffened composite structure resembling the skin of an aircraft wing box

    Phase detection at the quantum limit with multi-photon Mach-Zehnder interferometry

    Get PDF
    We study a Mach-Zehnder interferometer fed by a coherent state in one input port and vacuum in the other. We explore a Bayesian phase estimation strategy to demonstrate that it is possible to achieve the standard quantum limit independently from the true value of the phase shift and specific assumptions on the noise of the interferometer. We have been able to implement the protocol using parallel operation of two photon-number-resolving detectors and multiphoton coincidence logic electronics at the output ports of a weakly-illuminated Mach-Zehnder interferometer. This protocol is unbiased and saturates the Cramer-Rao phase uncertainty bound and, therefore, is an optimal phase estimation strategy.Comment: 4 pages, 5 figures replaced fig. 1 to correct graphics bu

    Nonsolar astronomy with the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI)

    Get PDF
    The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) is a NASA Small Explorer satellite designed to study hard x-ray and gamma-ray emission from solar flares. In addition, its high-resolution array of germanium detectors can see photons from high-energy sources throughout the Universe. Here we discuss the various algorithms necessary to extract spectra, lightcurves, and other information about cosmic gamma-ray bursts, pulsars, and other astrophysical phenomena using an unpointed, spinning array of detectors. We show some preliminary results and discuss our plans for future analyses. All RHESSI data are public, and scientists interested in participating should contact the principal author

    Modelling the energy gap in transition metal/aluminium bilayers"

    Get PDF
    We present an application of the generalised proximity effect theory.Comment: 15 pages, 11 figures, presented at workshop on low temperature superconducting electronics at the University of Twente, The Netherland

    Stabilizing sodium hypochlorite at high pH: effects on soft tissue and dentin

    Full text link
    NaOH-stabilized NaOCl solutions have a higher alkaline capacity and are thus more proteolytic than standard counterparts

    Stable manifolds and homoclinic points near resonances in the restricted three-body problem

    Full text link
    The restricted three-body problem describes the motion of a massless particle under the influence of two primaries of masses 1μ1-\mu and μ\mu that circle each other with period equal to 2π2\pi. For small μ\mu, a resonant periodic motion of the massless particle in the rotating frame can be described by relatively prime integers pp and qq, if its period around the heavier primary is approximately 2πp/q2\pi p/q, and by its approximate eccentricity ee. We give a method for the formal development of the stable and unstable manifolds associated with these resonant motions. We prove the validity of this formal development and the existence of homoclinic points in the resonant region. In the study of the Kirkwood gaps in the asteroid belt, the separatrices of the averaged equations of the restricted three-body problem are commonly used to derive analytical approximations to the boundaries of the resonances. We use the unaveraged equations to find values of asteroid eccentricity below which these approximations will not hold for the Kirkwood gaps with q/pq/p equal to 2/1, 7/3, 5/2, 3/1, and 4/1. Another application is to the existence of asymmetric librations in the exterior resonances. We give values of asteroid eccentricity below which asymmetric librations will not exist for the 1/7, 1/6, 1/5, 1/4, 1/3, and 1/2 resonances for any μ\mu however small. But if the eccentricity exceeds these thresholds, asymmetric librations will exist for μ\mu small enough in the unaveraged restricted three-body problem

    Motion of vortices implies chaos in Bohmian mechanics

    Get PDF
    Bohmian mechanics is a causal interpretation of quantum mechanics in which particles describe trajectories guided by the wave function. The dynamics in the vicinity of nodes of the wave function, usually called vortices, is regular if they are at rest. However, vortices generically move during time evolution of the system. We show that this movement is the origin of chaotic behavior of quantum trajectories. As an example, our general result is illustrated numerically in the two-dimensional isotropic harmonic oscillator.Comment: 7 pages 5 figure
    corecore