
Europhys. Lett., 71 (2), pp. 159–165 (2005)
DOI: 10.1209/epl/i2005-10085-3

EUROPHYSICS LETTERS 15 July 2005

Motion of vortices implies chaos in Bohmian mechanics
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Abstract. – Bohmian mechanics is a causal interpretation of quantum mechanics in which
particles describe trajectories guided by the wave function. The dynamics in the vicinity of
nodes of the wave function, usually called vortices, is regular if they are at rest. However,
vortices generically move during time evolution of the system. We show that this movement
is the origin of chaotic behavior of quantum trajectories. As an example, our general result is
illustrated numerically in the two-dimensional isotropic harmonic oscillator.

De Broglie-Bohm’s (BB) approach to quantum mechanics has experienced an increased
popularity in recent years. This is due to the fact that it combines the accuracy of the
standard quantum description with the intuitive insight derived from the causal trajectory
formalism, thus providing a powerful theoretical tool to understand the physical mechanisms
underlying microscopic phenomena [1, 2]. Although the behavior of quantum trajectories
is very different from classical solutions, it can be used to gain intuition in many physical
phenomena. Numerous examples can be found in different areas of research. In particular, we
can mention studies of barrier tunneling in smooth potentials [3], the quantum back-reaction
problem [4] and ballistic transport of electrons in nanowires [5].
According to the BB theory of quantum motion, a particle moves in a deterministic orbit

under the influence of the external potential and a quantum potential generated by the wave
function. This quantum potential can be very intricate because it encodes information on
wave interferences. Based on it, Bohm already predicted complex behavior of the quantum
trajectories in his seminal work [6]. This was recently confirmed in several studies when
the presence of chaos in various systems has been shown numerically [7–9]. However, the
mechanisms that cause such a complex behavior is still lacking. In this letter we show that
movement of the zeros of the wave function, commonly known as vortices, implies chaos in
the dynamics of quantum trajectories. Such a movement perturbs the velocity field producing
transverse homoclinic orbits that generate the well-known Smale horseshoes which is the origin
of complex behavior. Our assertion is based on an analytical proof in a simplified model which
resembled the velocity field near the vortices. In addition, we present a numerical study in a
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2D isotropic harmonic oscillator that displays a route to chaos dominated by this mechanism.
It is important to mention that there is no agreement in previous works about the influence
of vortices on the chaotic motion of quantum trajectories [8–11].
The fundamental equations in the BB theory are derived from the introduction of the wave

function in polar form, ψ(r, t)=R(r, t) eiS(r,t) (throughout the paper h̄ is set equal to 1), into
the time-dependent Schrödinger equation, thus obtaining two real equations:

∂R2

∂t
+∇·

(
R2 ∇S

m

)
= 0, (1)
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∂t
+
(∇S)2
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2m
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R
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which are the continuity and quantum Hamilton-Jacobi equations, respectively. The last
term in the left-hand side of eq. (2) is the so-called quantum potential, a non-local function
determined by the quantum state, which, together with V , determines the total force acting on
the system. Similarly to what happens in the usual classical Hamilton-Jacobi theory, quantum
trajectories of a particle of mass m can then be defined by means of the following velocity
field equation:

v = ṙ =
1
m
∇S = i

2m
ψ∇ψ∗ − ψ∗∇ψ

|ψ|2 . (3)

Vortices appear naturally in the BB framework. They result from wave function inter-
ferences so they have no classical explanation. In systems without magnetic field, the bulk
vorticity ∇×v in the probability fluid is determined by the points where the phase S is singu-
lar. This may occur only at points where the wave function vanishes. This condition is fulfilled
by isolated points in a 2D system and lines in a 3D system. Due to the single-valuedness of
the wave function, the circulation Γ along any closed contour ξ encircling a vortex must be
quantized, that is

Γ =
∫

ξ

ṙ dr =
2πn
m

, (4)

with n an integer [12,13]. So, the velocity v must diverge as one approaches a vortex. In fact,
the time-dependent velocity field in the vicinity of a vortex located at time t in rv(t) is given by

v =
−i
2m
[r − rv(t)]× w × w∗

|[r − rv(t)] · w|2 , (5)

where w ≡ ∇ψ(rv(t)) [10, 14]. We consider here 2D systems but we believe that our results
are valid for systems of higher dimensions.
Before presenting our analytical results, we show a numerical simulation of quantum tra-

jectories in a system consisting of a particle of unit mass in a 2D isotropic harmonic oscillator.
We have set the angular frequency ω = 1, so the Hamiltonian of the system results to be

H = −1
2

(
∂2

∂x2
+
∂2

∂y2

)
+
1
2
(
x2 + y2

)
. (6)

The eigenenergies are Enxny
= nx+ny+1 and the eigenfunctions φnxny

(x, y) = exp[− 1
2 (x

2+
y2)]Hnx

(x)Hny
(y)/

√
π 2nx+ny nx! ny! with nx = 0, 1, . . ., ny = 0, 1, . . ., where Hn is the n-

th–degree Hermite polynomial.
We have chosen the following general combination of the first three eigenstates of the

Hamiltonian of eq. (6) as initial state:

ψ0 = aφ00 + b exp[−iγ1]φ10 + c exp[−iγ2]φ01 , (7)
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Fig. 1 – Poincaré surface of section for the quantum trajectories generated by the wave function
of eq. (7) with b = c and a/b = 0 (a), 0.0553 (b), 0.1138 (c) and 0.17651 (d) with fixed value of
γ1 = 3.876968 and γ2 = 2.684916. The trajectories of the vortex of the corresponding wave functions
are shown in fig. 3.

Fig. 2 – Part of the Poincaré surface of section for the quantum trajectories generated by the wave
function of eq. (7) with small values of a/b. The parameter b = c and a/b = 0.01082 (a), 0.02175 (b),
0.0328 (c) and 0.0440 (d) with fixed value of γ1 = 3.876968 and γ2 = 2.684916.

with a, b, c, γ1 and γ2 real numbers and a2 + b2 + c2 = 1 (the normalization condition). A
remarkable point is that this state generates a periodic time-dependent velocity field with only
one vortex. Moreover, the trajectory of the vortex can be obtained analytically resulting:

rv(t) = (xv(t), yv(t)) =
(

a√
2b
sin(γ2 − t)
sin(γ1 − γ2)

,
a√
2c
sin(γ1 − t)
sin(γ1 − γ2)

)
. (8)

This fact allows us to see the influence of the movement of a vortex in the dynamics of the
quantum trajectories, without taking into account the possibility of instantaneous creation or
annihilation of a vortex pair with opposite circulation [14, 15]. This important phenomenon
will be studied elsewhere [16].
The non-autonomous velocity field generated by the wave function of eq. (7) is periodic

so the best surface of section is given by fixing t = 2πn with n = 0, 1, . . . (also called a
stroboscopic view). Figure 1 shows surfaces of section with b = c and a/b = 0, 0.0553, 0.1138
and 0.17651 with fixed value of γ1 = 3.876968 and γ2 = 2.684916. A clear transition to chaos
appears as the parameter a/b is increased. If the position of the vortex is fixed, the trajectories
are regular and no chaos is present (see fig. 1(a)). However, irregular dynamics is observed for
small a/b (fig. 1(b)). The transition to irregular dynamics is shown in fig. 2. The movement
of the vortex produces a saddle point near (0.6, 0.75) and its stable and unstable manifolds
have a topological transverse intersection generating the well-known homoclinic tangle [17].
The trajectories of the vortex for the cases studied in fig. 1 are plotted in fig. 3.
Now we will show analytical results that explain the numerical experiments presented

before. Our starting point is the following model: a particle of unit mass on the plane in the
velocity field of eq. (5) with the constraints that the trajectory of the vortex is a time-periodic
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Fig. 3 – Path described by the vortex (eq. (8)) of the velocity field generated by wave functions of
eq. (7) with b = c and a/b = 0 (filled circle), 0.0553 (dotted line), 0.1138 (dashed line) and 0.17651
(solid line) with fixed value of γ1 = 3.876968 and γ2 = 2.684916.

curve and wx = iwy [18]. Thus, the non-autonomous vector field is equal to

vx =
−(y − yv(t))

(x− xv(t))2 + (y − yv(t))2
,

vy =
(x− xv(t))

(x− xv(t))2 + (y − yy(t))2
. (9)

Taking x̄ = x − xv(t) ȳ = y − yv(t) and writing in polar coordinates (x̄ = r cos(θ), ȳ =
r sin(θ)), the velocity field of eq. (9) results:

vr = r[sin(θ)yv(t) + xv(t) cos(θ)],

vθ =
1
r
+ cos(θ)yv(t)− xv(t) sin(θ).

This non-autonomous velocity field can be seen as a perturbation of the autonomous veloc-
ity field v0 ≡ (0, 1

r ), with G(r, θ, t) ≡ (r[sin(θ)yv(t) + xv(t) cos(θ)], cos(θ)yv(t) − xv(t) sin(θ))
the time-periodic perturbation. Note that the field is induced by the time-dependent Hamil-
tonian

H(r, θ, t) =
1
2
log(r) + r[cos(θ)yv(t)− sin(θ)xv(t)]. (10)

We consider periodic curves rv(t) such that

∫ T0

0

cos(θ)yv(t)− xv(t) sin(θ)dtds �= 0. (11)

Under these hypothesis the following property can be proved:
There exists a saddle periodic orbit of the flow associated to the vector field of eq. (9),

exhibiting a homoclinic transversal intersection.
This result, which implies that quantum trajectories show topological chaos, is the main

finding of our work. We illustrate here the geometrical arguments of the proof and we leave
the full details for a future publication [19]. We notice that a periodic orbit of saddle type
exhibits a homoclinic transversal intersection if its stable and unstable manifolds intersect
each other and the tangents of the manifolds are not collinear at the intersection. Transversal
homoclinic intersections (or homoclinic tangles) beat at the heart of chaos. This is because
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Fig. 4 – (a) Schematic plot of the invariants of the non-perturbed map R0 generated by the autonomous
velocity field v0 (solid lines). With dashed line it is plotted a segment with θ = 0. (b) Non-perturbed
mapped R0 of the segment with θ = 0 (dashed line). (c) It is showed with dashed line the image of
the perturbed map R of a circle Cr with radius r (solid line). A point q ∈ R(Cr)∩Cr is also plotted.

in the region of a homoclinic tangle, initial conditions are subject to a violent stretching and
folding process, the two essential ingredients for chaotic behavior.
Let us start to show the main result of the letter considering some important charateristics

and properties of the flows generated by the velocity fields v0 and v. The flow Φ0
t associated

with the autonomous velocity field v0 is defined for every (x̄, ȳ) �= (0, 0). Thus, given a positive
time T0, the map R0 = Φ0

T0
: 	2 \ {(0, 0)} → 	2 \ {(0, 0)} is well defined. It is straightforward

to show that the map R0 written in polar coordinates results to be R0 = (R0
r(r, θ), R

0
θ(r, θ)) =

(r, θ+ 1
rT0). Map R0 keeps invariant the set of points with same radius; i.e., it keeps invariant

the circles. Moreover, the circles are rotated with a rate of rotation inversely proportional
to the radius (see fig. 4(a) and (b)). Observe that map R0 resembles a twist map with the
difference that in the present case, the rate of rotation grows to infinity when the radius is
reduced. In this respect, it is important to mention that for generic conservative perturbations
of the twist map the existence of homoclinic points associated to a saddle periodic point was
proved [20]. This result was also extended to time-periodic perturbations of a flow which
exhibit an elliptic singularity [21].
We have assumed that the vortex moves periodically along a curve, that is, rv(t) = rv(t+

T0). Then, the time-dependent velocity field v induces a flow Φt which is defined for every
(x̄, ȳ) �= {(0, 0)}. So, the map R = ΦT0 : 	2 \{(0, 0)} → 	2 \{(0, 0)} is well defined. Note that
flow Φt is generated by a time-periodic Hamiltonian (eq. (10)), so R is a conservative map.
Also, R can be extended continuously to (0, 0) defining R(0, 0) ≡ (0, 0) (note that R → 0
when (x̄, ȳ)→ (0, 0)). Then, it follows that map R verifies:

Property A: Like R0, map R also has the property that circles are rotated with a rate of
rotation inversely proportional to the radius (see fig. 4(a) and (b)). In other words, if map R
is written in polar coordinates R(r, θ) = (Rr(r, θ), Rθ(r, θ)), then ∂rRθ is of the order of 1/r2.

Property B: The image of a small circle of radius r intersects transversally this circle; i.e.
R(Cr) ∩ Cr �= ∅ and if q ∈ R(Cr) ∩ Cr then the tangent to R(Cr) and to Cr in q are not
collinear (see fig. 4(c)).
From properties A and B of the perturbed map R it follows that for arbitrarily small r

the map R has a fixed point p0 with radius smaller than r exhibiting homoclinic transversal
point. Of course, this result implies that the vector field of eq. (9) has a saddle periodic orbit
with an homoclinic transversal intersection.
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Fig. 5 – Schematic plots to show the existence of a saddle periodic point p0 of the map R with a
homoclinic transversal intersection. (a) The curve r → (r, θ0(r)) is plotted with a thick solid line, and
the curve r → R((r, θ0(r))) = (r, θ1(r)) is plotted with a thick dashed line. Two invariants circles (Cr1

and Cr2) and their perturbed mapping are also plotted. Note the transversal intersection between
the circles an their respective mapping (points q1 and q2). (b) The rectangle B (hatched area) is
bounded by two pieces of arcs C1 and C2 contained in Cr1 and Cr2 (where r1 and r2 are closed to r0

verifying r1 < r0 < r2) and two segments l1 and l2 contained in two different rays of constant angle.
The segments γu and γs, that connect the periodic point p0 with the transversal intersection q0, are
plotted with dash-dotted lines. The mapping R(B) of the considered rectangle is also plotted with a
thick dashed line.

We show the previous result in two steps. First, let us show that the perturbed map R has
a fixed point. Property B guarantees the existence of the curve (r, θ0(r)) plotted in fig. 5(a).
Note that θ0(r) is the angular coordinate of a point on the intersection of a circle Cr with its
image R(Cr). A point on such a curve is mapped to another point with the same radius r but
with a different angle θ1(r),

R(r, θ0(r)) = (Rr(r, θ0(r)), Rθ(r, θ0(r))) = (r, θ1(r)).

It is clear that map R has a fixed point if there exists an r0 such that θ0(r0) = θ1(r0). In other
words, curves (r, θ0(r)) and (r, θ1(r)) of fig. 5(a) intersect at r0. From property A it follows
that the variation of θ1(r) is larger than the variation of θ0(r); in fact, the derivative of θ1(r)
is of the order of 1/r2. This fact guarantees the existence of r0 in the vicinity of r → 0 [19].
Now we will see that the mentioned fixed point has a transversal homoclinic intersection

of its stable and unstable manifolds. We recall that the stable manifold is the set of points
that converges to the fixed point by forward iteration of the dynamic. Conversely, the points
on the unstable manifold converge to the fixed point by backward iteration. In fig. 5(b) we
consider a circle C0 of radius r0 containing the fixed point p0. Due to property B, C0 and its
image R(C0) have at least an additional point of intersection denoted by q0. Points p0 and
q0 are connected by the segments γs and γu of C0 and R(C0), respectively. Let us consider
the hatched rectangle B of fig. 5(b) that contains the fixed point p0. Using property A, we
have deduced that segments of constant angle l1 and l2 are stretched by R, and this shows
that rectangle B is contracted by R along directions close to the tangent of the circles Cr and
expanded along vectors close to the tangent of R(Cr). This is displayed in fig. 5(b), where
the mapping of the rectangle B is plotted with a thick dashed line. Moreover, we have proved
in ref. [19] that R(B) is close to γu and intersects C0 in a point near q0, and that R−1(B) is
close to γs and intersects C0 near q0. This implies that the unstable manifold of p0 is close to
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γu and the stable manifold is close to γs. We recall that γu crosses γs at q0, then the stable
and unstable manifolds of p0 have a transversal intersection near q0.
In summary, we have found an universal mechanism leading to quantum trajectories having

chaotic behavior. We have shown that the movement of vortices is a generic time-dependent
perturbation of an autonomous velocity field which creates a saddle periodic orbit with a
transversal homoclinic intersection of its stable and unstable manifolds. This transversal in-
tersection generates the well-known Smale horseshoe which is the origin of complexity. Our
results should be useful due to the fact that such deterministic quantum orbits are an impor-
tant theoretical tool for understanding and interpreting several processes in different fields.
On the other hand, our geometrical analysis of a singular velocity field could be important
for both theoretical and applied problems of dynamical systems, as for example advection in
non-stationary fluids [22].
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