542 research outputs found

    The universal expression for the amplitude square in quantum electrodynamics

    Full text link
    The universal expression for the amplitude square |u_f M u_i|^2 for any matrix of interaction M is derived. It has obvious covariant form. It allows the avoidance of calculation of products of the Dirac's matrices traces and allows easy calculation of cross-sections of any different processes with polarized and unpolarized particles.Comment: 4 page

    Data-driven derivation of molecular substructures that enhance drug activity in Gram-negative bacteria

    Get PDF
    [Image: see text] The complex cell envelope of Gram-negative bacteria creates a formidable barrier to antibiotic influx. Reduced drug uptake impedes drug development and contributes to a wide range of drug-resistant bacterial infections, including those caused by extremely resistant species prioritized by the World Health Organization. To develop new and efficient treatments, a better understanding of the molecular features governing Gram-negative permeability is essential. Here, we present a data-driven approach, using matched molecular pair analysis and machine learning on minimal inhibitory concentration data from Gram-positive and Gram-negative bacteria to uncover chemical features that influence Gram-negative bioactivity. We find recurring chemical moieties, of a wider range than previously known, that consistently improve activity and suggest that this insight can be used to optimize compounds for increased Gram-negative uptake. Our findings may help to expand the chemical space of broad-spectrum antibiotics and aid the search for new antibiotic compound classes

    On the ion coupling mechanism of the MATE transporter ClbM

    Get PDF
    Bacteria use a number of mechanisms to defend themselves from antimicrobial drugs. One important defense strategy is the ability to export drugs by multidrug transporters. One class of multidrug transporter, the so-called multidrug and toxic compound extrusion (MATE) transporters, extrude a variety of antibiotic compounds from the bacterial cytoplasm. These MATE transporters are driven by a Na+, H+, or combined Na+/H+ gradient, and act as antiporters to drive a conformational change in the transporter from the outward to the inward-facing conformation. In the inward-facing conformation, a chemical compound (drug) binds to the protein, resulting in a switch to the opposite conformation, thereby extruding the drug. Using molecular dynamics simulations, we now report the structural basis for Na+ and H+ binding in the dual ion coupled MATE transporter ClbM from Escherichia coli, which is connected to colibactin-induced genotoxicity, yielding novel insights into the ion/drug translocation mechanism of this bacterial transporter.</p

    A role for loop G in the β1 strand in GABA<sub>A</sub> receptor activation

    Get PDF
    The GABAA receptor α subunit β1 strand runs anti-parallel to the β2 strand, which contains loop D, known to participate in receptor activation and agonist binding. However, a role for the β1 strand has yet to be established. We used molecular dynamics simulation to quantify the solvent accessible surface area (SASA) of β1 strand residues in the GABAA β3 homopentamer structure. Residues in the complementary interface equivalent to those between Asp43 and Thr47 in the a1 subunit have an alternating pattern of high and low SASA consistent with a β strand structure. We investigated the functional role of these β1 strand residues in the α1 subunit by individually replacing them with Cys residues. D43C and T47C substitutions reduced the apparent potency of GABA at α1β2γ2 receptors by around 50-fold and 8-fold, respectively, whereas the F45C substitution caused a biphasic GABA concentration-response relationship and increased spontaneous gating. Receptors with D43C or T47C substitutions were sensitive to MTSEA modification. However, GABA-evoked currents mediated by α1(F45C)β2γ2 receptors were unaffected by MTSEA, suggesting that this residue is inaccessible. Both GABA and the allosteric agonist propofol reduced MTSEA modification of α1(D43C)β2γ2 and α1(T47C)β2γ2 receptors indicating movement of the β1 strand even during allosteric activation. This is in contrast to α1(F64C)β2γ2 receptors where only GABA, but not propofol reduced MTSEA modification. These findings provide the first functional evidence for movement of the β1 strand during gating of the receptor and identify residues that are critical for maintaining GABAA receptor function. This article is protected by copyright. All rights reserved.</p

    Accurate prediction of dynamic protein-ligand binding using P-score ranking

    Get PDF
    Protein–ligand binding prediction typically relies on docking methodologies and associated scoring functions to propose the binding mode of a ligand in a biological target. Significant challenges are associated with this approach, including the flexibility of the protein–ligand system, solvent-mediated interactions, and associated entropy changes. In addition, scoring functions are only weakly accurate due to the short time required for calculating enthalpic and entropic binding interactions. The workflow described here attempts to address these limitations by combining supervised molecular dynamics with dynamical averaging quantum mechanics fragment molecular orbital. This combination significantly increased the ability to predict the experimental binding structure of protein–ligand complexes independent from the starting position of the ligands or the binding site conformation. We found that the predictive power could be enhanced by combining the residence time and interaction energies as descriptors in a novel scoring function named the P-score. This is illustrated using six different protein–ligand targets as case studies.</p

    Accurate prediction of dynamic protein-ligand binding using P-score ranking

    Get PDF
    Protein–ligand binding prediction typically relies on docking methodologies and associated scoring functions to propose the binding mode of a ligand in a biological target. Significant challenges are associated with this approach, including the flexibility of the protein–ligand system, solvent-mediated interactions, and associated entropy changes. In addition, scoring functions are only weakly accurate due to the short time required for calculating enthalpic and entropic binding interactions. The workflow described here attempts to address these limitations by combining supervised molecular dynamics with dynamical averaging quantum mechanics fragment molecular orbital. This combination significantly increased the ability to predict the experimental binding structure of protein–ligand complexes independent from the starting position of the ligands or the binding site conformation. We found that the predictive power could be enhanced by combining the residence time and interaction energies as descriptors in a novel scoring function named the P-score. This is illustrated using six different protein–ligand targets as case studies.</p

    TRO OG EKSISTENTIELT VELBEFINDENDE BLANDT KRÆFTPATIENTER

    Get PDF
    En kræftdiagnose vil som regel have negativ indvirkning på patienters psykologiske og sociale velbefindende. Religiøsitet eller spiritualitet kan tænkes at være en måde, kræftsygdommen søges håndteret på, og eksistentielt velbefindende er blevet positivt forbundet med psykologisk, socialt og fysisk velbefindende samt med oplevelsen af global livskvalitet. Undersøgelser peger på, at der forekommer religiøse og spirituelle behov både blandt kræftpatienter internationalt og i Danmark, der ikke imødekommes. Selvom resultater af nogle undersøgelser kunne indikere, at religiøsitet/spiritualitet kan have indflydelse på fysiologiske processer af betydning for kræft, er det fortsat uafklaret, om religiøse/spirituelle faktorer har indflydelse på overlevelse og/eller kræftsygdomsforløb. Der er brug for yderligere undersøgelser for at afklare, på hvilken måde religiøs/ spirituel mestring kan have gavnlig indvirkning for kræftpatienter ikke mindst i et sekulært samfund som det danske

    A liver fibrosis cocktail? Psoriasis, methotrexate and genetic hemochromatosis

    Get PDF
    BACKGROUND: Pathologists are often faced with the dilemma of whether to recommend continuation of methotrexate therapy for psoriasis within the context of an existing pro-fibrogenic risk factor, in this instance, patients with genetic hemochromatosis. CASE PRESENTATIONS: We describe our experience with two male psoriatic patients (A and B) on long term methotrexate therapy (cumulative dose A = 1.56 gms and B = 7.88 gms) with hetero- (A) and homozygous (B) genetic hemochromatosis. These patients liver function were monitored with routine biochemical profiling; apart from mild perivenular fibrosis in one patient (B), significant liver fibrosis was not identified in either patient with multiple interval percutaneous liver biopsies; in the latter instance this patient (B) had an additional risk factor of partiality to alcohol. CONCLUSION: We conclude that methotrexate therapy is relatively safe in patients with genetic hemochromatosis, with no other risk factor, but caution that the risk of fibrosis be monitored, preferably by non-invasive techniques, or by liver biopsy
    corecore