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ABSTRACT: The complex cell envelope of Gram-negative bacteria creates a
formidable barrier to antibiotic influx. Reduced drug uptake impedes drug
development and contributes to a wide range of drug-resistant bacterial
infections, including those caused by extremely resistant species prioritized by
the World Health Organization. To develop new and efficient treatments, a
better understanding of the molecular features governing Gram-negative
permeability is essential. Here, we present a data-driven approach, using
matched molecular pair analysis and machine learning on minimal inhibitory
concentration data from Gram-positive and Gram-negative bacteria to uncover
chemical features that influence Gram-negative bioactivity. We find recurring
chemical moieties, of a wider range than previously known, that consistently
improve activity and suggest that this insight can be used to optimize
compounds for increased Gram-negative uptake. Our findings may help to expand the chemical space of broad-spectrum antibiotics
and aid the search for new antibiotic compound classes.

■ INTRODUCTION
The majority of severely drug-resistant bacterial infections are
caused by Gram-negative (GN) bacteria, which account for two-
thirds of the priority list of highly drug-resistant pathogens
published by the World Health Organization (WHO) in 2017.
Critical priority GN bacteria include Acinetobacter baumannii,
Pseudomonas aeruginosa, Enterobacteriaceae, and Klebsiella
pneumoniae.1 In 2019 and 2020, the WHO concluded that the
antibiotics currently in the development pipeline will not be
sufficient to combat the large spectrum of drug-resistant
pathogenic bacteria. Since 2017, 11 new antibiotics have been
approved for use, nine of which are closely related derivatives of
existing antibiotic classes and hence are subject to cross-
resistance.2,3 There is thus an urgent medical need to develop
additional broad-spectrum antibiotics, particularly of new
classes, which are capable of evading existing resistance
pathways.
In the case of GN bacteria, bioactivity is impeded by a high

level of intrinsic resistance, arising from the poor drug
permeability of the GN cell envelope. Especially the outer
membrane, a unique feature of GN bacteria, presents a major
barrier to drug uptake. Antibiotics can traverse the outer
membrane either via porins, trimeric pore proteins that usually
generate passageways for hydrophilic molecules, or, in some
cases, directly via lipid-mediated membrane diffusion.4−7 The
physicochemical character and pore dimensions of porin
channels are widely thought to restrict the maximum drug
influx rates achievable in GN bacteria, and mutations in the
channels, as a result of acquired resistance, can further reduce
uptake rates.8,9 Tripartite efflux pumps function synergistically

with the low inward permeability by actively expelling a broad
range of drugs from the periplasm, a buffer volume between the
outer and inner membranes in GN bacteria. Overcoming the
permeability barrier in the cell envelope of GN pathogens has
been widely recognized as the key obstacle to the development
of new broad-spectrum antibiotics, active against both Gram-
positive (GP) and GN bacteria. However, the physical and
chemical underpinnings of drug permeation into GN bacteria
are poorly understood.10−14

Over the past two decades, efforts have been made to derive
general physicochemical composition rules to guide the design
of new antibiotics by analyzing existing drugs. Most of the early
studies in this area were based on small datasets and often
focused on antibiotics available on the market at the time.14−16

Through the development of liquid chromatography−tandem
mass spectrometry (LC-MS/MS) techniques, which allow
accurate bacterial accumulation assays, research into GN
permeation rules gained further momentum.12,17,18 Although
multiple studies which included analyses of both external and
proprietary datasets have since provided insights into GN
activity, there appears to be no consensus regarding the key
physical and chemical determinants of compound uptake.19 In a
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recent landmark study, it was shown that the addition of
terminal amine groups, among other factors, considerably
improved the GN permeability of GP-active antibacterial
compounds.18,20 However, adding terminal amine groups to a
given lead compound will not always be feasible, and it is
therefore essential to broaden the understanding of chemical
space accessible to enhance GN permeation. This would not
only help to accelerate anti-bacterial drug design but also
constitute an important step forward toward tackling the widely
encountered problem of efficient drug permeation into cells
more generally.
In recent years, the field of cheminformatics has experienced a

significant boost from the adoption of machine learning (ML)
approaches in areas including lead generation, lead optimization,
and physicochemical property prediction.21 ML modeling has
previously been applied to antibiotic design, using public as well
as proprietary datasets, potentially opening new avenues toward
developing a new generation of antibiotics.18,21−24 Here, we
build on these recent milestones to shed light on the major
chemical determinants of GN drug activity and formulate
chemical rules to enhance activity, focusing in particular on
permeability across the GN cell envelope. We used a dataset
composed of 1887 compounds with associated minimal
inhibitory concentration (MIC) data in the GN bacterium
Escherichia coli and the GP bacterium Staphylococcus aureus after
a strict curation process to yield a proxy for permeation, followed
by a combination of ML-based data-driven activity prediction,
matched molecular pair analysis (MMPA), and independent
validations on experimental data. While confirming the
usefulness of terminal amine groups to enhance GN
permeability, our results reveal a broader variety of chemical
modifications that increase GN activity, and we delineate an
approach to optimize compound property prediction from a
limited-size, but rigorously curated, publicly available dataset.

■ RESULTS AND DISCUSSION
Curation and Matched Molecular Pair Analysis of MIC

Data. We retrieved single-point MIC data for 19 417
compounds from the CDD and a further 9645 MIC datapoints
from CO-ADD. The data were curated to form a proxy for GN
permeation according to the criteria summarized in Table 1.
Applying these criteria led to 934 compounds labeled as “1”,
GN-active class, and 953 labeled as “0”, GN-inactive class (GN-
activity dataset 1; Table 2).

We first examined the coverage of property space for the two
distinct classes of molecules. Figure 1 shows the distribution of
molecular weight (MW) and hydrophobicity (log P) for GN-
active vs inactive compounds. The GN-active molecules display
a shift toward a smaller average log P value ( Plog permeable ≃ 2.41,

Plog impermeable ≃ 2.96), with the two distributions exhibiting a

significant (p-value = 1 × 10−4) difference from each other,
although on the graph, the hydrophobicity regions occupied by
the two types of molecules are largely inseparable.
Furthermore, GN-active compounds exhibit a slight tendency

toward larger average MW, (MWactive ≃ 530.56, MWinactive ≃
519.24), although no significant difference between the MW
distributions is observed here (p-value = 0.433).
Previous work, based on the analysis of less abundant

compound datasets, has suggested that GN-permeable mole-
cules tend to be more hydrophilic and smaller than GN-
impermeable molecules. This effect has mainly been attributed
to the selection criteria for permeating porin channels in the GN
outer membrane.14,19 Porins possess a highly hydrophilic inner
pore lining and a narrow, charged eyelet region which imposes
an additional size, or MW, limitation on the spectrum of
translocated molecules.6,25 According to our present analysis of
1887 compounds, however, neither MW nor log P can serve as
primary separator or predictor of activity or permeability across
the GN cell envelope, despite the small shift observed in log P.
Recently, interactions between different classes of antibiotics

Table 1. Curating Compounds Based on Activity against S.
aureus vs E. coli

pathogen compound 1 compound 2 compound 1887

S. aureus pMIC ≥ 5 pMIC ≥ 5
...

pMIC ≥ 5
E. coli pMIC ≥ 5 pMIC < 5 pMIC ≥ 5
f inal labela 1 0 1

aCompounds that are active against both pathogens above a threshold
MIC are labeled “1” (GN-permeable), and compounds that are active
against S. aureus but inactive against E. coli are labeled “0” (GN-
impermeable).

Table 2. Number of S. aureus and E. coli MIC Datapoints
Initially Retrieved from the CO-ADD and CDD Databases
and Number of GN-Inactive and GN-Active Compounds
Representing Permeation after Curation of the Initial Data

Initial MIC Dataset

Staphylococcus aureus Escherichia coli

data origin no. of data points data origin no. of data points

CDD 11 428 CDD 7 989
CO-ADD 4 934 CO-ADD 4 711
total 16 362 12 700

Curated MIC Dataset (GN-Activity Dataset)

GN-inactive 953 GN-active 934

Figure 1. Chemical space occupied by GN-active (permeable, label
“1”) and GN-inactive (impermeable, label “0”) compounds within GN-
activity dataset 1 according to our curation, represented by their
molecular weight (MW) and hydrophobicity (log P).
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and lipopolysaccharides in the GN bacterial outer membrane
have been characterized, highlighting direct pathways into the
outer membrane that do not involve porins.26 Similarly, it has
been shown that permeating antimicrobials bypass the porins in
the GN bacterial pathogen P. aeruginosa.7 A greater diversity of
inward permeation pathways than previously thought could,
accordingly, explain the absence of clear MW or log P
constraints on GN activity in our analysis and be responsible
for the lack of consensus among previous studies.19 We next
performed an initial cycle of MMPA on GN-activity dataset 1 to
identify molecular transformations that are associated with a
change in MIC. To confine our further analyses exclusively to
transformations with statistically significant effects on MIC, we
used a paired t test on MIC distributions that differ by the same
transform and set a p-value threshold of ≤0.05. The transforms
were further filtered for a positive t-statistic, leaving only
transforms that lead to an increase in activity, i.e., smallerMIC or
larger pMIC values. We applied a Benjamini−Hochberg
correction to all sets of t tests carried out in this study to
control for the expected false discovery rate.27

Table 3 shows that the numbers of total pairs and unique
transforms are of similar magnitude within GN-activity dataset

1, indicating that there is only a small number of unique
transforms with multiple repeats. Further analysis, based on the
previously defined conditions, showed that none of the
transforms in GN-activity dataset 1 passed the strict significance
threshold we set. We therefore next aimed to expand the initial
compound dataset by generating synthetic GN-activity data,
focusing on permeation by the previous curation step, through
ML modeling.
Generating Synthetic Data. Initial hyperparameter

optimization on a training dataset (85% of compounds in GN-
activity dataset 1, n = 1604; 807 GN-active, 797 GN-inactive
molecules), with a test set retained separately, resulted in the
following parameters for all models used in the present study:
hidden size of the neural network layers, 1700; number of
message passing iterations, 6; dropout probability, 0.05; and
number of feed-forward layers, 1.44 Using these parameters, a
classifier consisting of an ensemble of five Chempropmodels was
trained and 5-fold cross-validated, leading to a resulting overall
training score of AUC = 0.92 ± 0.01. A recommended built-in
method for additional normalized 2D rdkit features was used in
parameter optimization and during training.45 Finally, the
ensemble was tested on the remaining 15% of compounds (n
= 283; 127 GN-active, 156 GN-inactive), achieving a test score
of AUC = 0.98. The trained model was then used to carry out
predictions of GN-activity scores on a scale between 0 and 1 for

each compound within three external datasets, ENM_1−
ENM_3.

Matched Molecular Pair Analysis of Synthetic Data.
Each of the datasets, ENM_1, ENM_2, and ENM_3, containing
compounds with predicted GN-activity scores, was analyzed
separately using MMPA. The molecular transformations found
through MMPA were then combined into a single dataset and
subjected to statistical testing (paired t tests), which yielded
2705 significant transforms. The average difference in activity is
0.19, while the average number of repeats we observe for each
transformation is 7.75.
We next analyzed the chemical nature of the transforms,

aiming to detect molecular substructures that consistently
enhance or decrease the predicted GN-activity score throughout
the whole dataset. For each transform, we identified functional
groups and moieties present in the left-hand side (LHS) and
right-hand side (RHS) of each transform separately (cf.
compound pair shown in Figure 2, left and right of the
transformation arrow). The LHS collection of substructures
describe the lower GN-activity member of each transform and
the RHS substructures characterize its higher GN-activity
counterpart. The substructures were then compared to a
predefined list consisting of 153 descriptors of functional groups
and moieties in SMARTS notation (Table S1A).28

We then restricted the number of substructural descriptors to
those undergoing a significant change in the transformations by
carrying out t tests (p-value≤ 0.01) on distributions prior to and
after the transformation, followed by Benjamini−Hochberg
correction.27 Subsequently, we focused on transformations
resulting in an increase in GN activity, but in principle, due to
the nature of MMPA, every transform examined can be reversed
to represent statistically significant reductions in predicted
activity. Descriptors representing generic substructures (e.g.,
arene, heteroarene, alkyne, alkene, benzene ring, and aza-arene)
were discarded since they describe largely unspecific changes to
the molecules encountered regularly in most transformations,
which mostly do not contain useful information on feasible
modifications. Taken together, these steps yielded 15 key
descriptors that were retained for further analysis (Table S1B).

Molecular Transformations Associated with Increased
GN Activity. We analyzed every substructural descriptor that
was linked to a significant enhancement of the predicted GN
activity across the set of molecular transformations, as shown in
Table 4. We then determined the average increase within each
subset ( PΔ ), whether addition or removal of the respective
chemical moiety led to this increase (+ /−), the number of
transformations in which a particular moiety change was
observed (repeats), and the most commonly exchanged
counter-moieties in the respective transformations (opposite
moieties, see below).
To illustrate our approach, the exemplar moiety, thiophene

(Table 4, entry 7), was encountered in 304 out of the 2705
transforms (“repeats”). Taken together, these chemical trans-
formations led to an average increase of ∼0.32 in the activity
score. Here, this marked increase was observed for the addition
of a thiophene moiety (+/−). In the transforms, thiophene most
often replaced nitrile or secondary amine groups (joint opposite
moiety 1, in 9% of the cases each), aniline (opposite moiety 2, in
8% of cases), and carbonyl groups (opposite moiety 3, in 5% of
all cases).
Table 4 shows that, on average, the addition of a primary

amine group exerts the largest effect on increasing the activity
score ( PΔ ≃ 0.42, represented by 61 transforms). The effect of

Table 3. Overview of the Datasets Used for MMPA in This
Study: Number of Derived Matched Pairs and Number of
Significant Molecular Transformations Remaining after
Performing Paired t tests and Secondary Filtering from Each
Dataset

dataset
total

compounds
total
pairs

unique
transforms

significant
transforms

GN-activity-1 1887 4922 4162 0
ENM_1 2.1M 240k 164k 499
ENM_2 460k 360k 271k 1057
ENM_3 43k 1M 735k 1149
total 2.6M 1.6M 1.1M 2705
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primary amines is larger than that of secondary amines ( PΔ ≃
0.24), represented in 306 transforms. These results are in
excellent agreement with the previous findings of Richter et al.,
who reported that primary amine groups increased GN
permeability after examining a set of 180 chemically diverse

compounds tested on E. coli.18 This underscores the validity of
our approach based both on experimentally recorded and
synthetic data, and using curated bioactivity data as a proxy for
cell wall permeability.
In our analysis, however, a range of further moieties is shown

to be associated with a substantial change in activity, similar to

Figure 2. (A) Matched molecular pair analysis (MMPA) consists of finding pairs of molecules (“A” and “B” in the diagram) that only differ by a small
structural change, referred to as chemical “transformation”, while maintaining a common core. Since every molecule is assigned an individual GN-
activity (or permeability) score P, the transformation can be associated with the difference in the score, ΔP. (B) Distribution of all predicted GN-
activity scores amongmolecules containing the depicted transformation in association with amaintained core (“A”, low-permeability partner in purple,
and “B”, high-permeability partner in orange). (C) Distribution of the score difference between all matching pairs with the same transformation.

Table 4. MMPA-Generated Key Molecular Transformations Shown to Significantly Affect GN-Activity Scores of Synthetically
Generated Dataa

entry main moiety +/− PΔ ± std repeats opposite moiety 1 opposite moiety 2 opposite moiety 3

1 primary amine addition 0.42 ± 0.25 61 ether [25%] carbonyl [20%] secondary amine [10%]
2 lactone removal 0.41 ± 0.08 35 secondary amine [14%] tertiary amine [9%] ether [6%]
3 ester (carboxylate

ester)
removal 0.39 ± 0.16 56 secondary amine [9%] (ether, primary amine) [7%] tertiary amine [7%]

4 carbonyl removal 0.37 ± 0.17 96 thiophene [17%] primary amine [13%] aryl chloride [9%]
5 nitrile removal 0.33 ± 0.13 255 aryl chloride [22%] (thiophene, ether) [12%] aryl fluoride [5%]
6 thiophene addition 0.32 ± 0.15 304 (nitrile, secondary amine)

[9%]
aniline [8%] carbonyl [5%]

7 tertiary carboxamide removal 0.31 ± 0.17 31 thiophene [42%] aryl chloride [23%] secondary carboxamide
[19%]

8 aryl chloride addition 0.28 ± 0.16 279 nitrile [20%] tertiary amine [6%] aryl fluoride [4%]
9 secondary amine addition 0.24 ± 0.13 306 tertiary amine [16%] ether [3%] nitrile [3%]
10 tertiary amine removal 0.22 ± 0.09 292 secondary amine [17%] (aryl chloride, aryl fluoride)

[6%]
alkanol [7%]

11 α,β-unsaturated
carbonyl

removal 0.21 ± 0.14 33 thiophene [18%] secondary amine [15%] aryl chloride [12%]

12 aryl fluoride addition 0.20 ± 0.13 154 nitrile [16%] tertiary amine [12%] alkanol [3%]
aListed are the molecular replacements that correlate with a strong increase of the predicted GN activity, most likely due to improved permeability
according to our initial curation, by either addition or removal of each specific main moiety (+/−). The top three exchange counterparts in the
matched molecular pairs are shown as opposite moieties. PΔ denotes the average change of the GN-activity score (limits from 0 to 1), linked to the
respective transformations with associated standard deviation. “Repeats” indicates the number of transformations that contain the “main moiety”.
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the level seen for primary amines (Table 4). For example, the
removal of ester groups (56 repeats) and their cyclic subset,
lactones (35 repeats), markedly improves the activity score (by

PΔ ≃ 0.41 and ≃0.39, respectively). While large, 14−16-
membered lactone rings are known structural elements of the
natural antimicrobial class, macrolides, the lactones examined in
our transformations are mostly smaller rings with up to 6
members. The substitution of carbonyl ( PΔ ≃ 0.37), nitrile ( PΔ
≃ 0.33), and carboxamide groups ( PΔ ≃ 0.32) improves GN
activity by a similar extent. Notably, the addition of thiophene
groups is only slightly less effective in increasing activity than the
addition of a primary amine group ( PΔ ≃ 0.32). Furthermore,
adding an aryl chloride group yields an activity increase of
comparable magnitude ( PΔ ≃ 0.28), while the addition of
secondary amines or aryl fluorides is also linked to a marked
enhancement of GN activity ( PΔ ≃ 0.24 and PΔ ≃ 0.20,
respectively; Table 4). While tertiary amines appear to be a

second replacement choice for two moieties that are negatively
correlated with improved GN activity, on average they are
themselves negatively correlated, especially when compared to
primary and secondary amines, which suggests that replacing
tertiary amines with secondary or primary amines increases the
probability of permeation.
Overall, a clear pattern emerges of groups such as primary and

secondary amines, and thiophenes and aryl halides, which have
large positive effects on GN activity, especially when they
replace substituent groups containing carbonyl oxygen (includ-
ing esters, lactones, and carboxamides). Our work thus
demonstrates that, beyond the addition of primary amines and
other nitrogen-containing groups, a range of alternative
modifications to a given core molecule are likely to have
similarly large effects on GN permeability.

Independent Test of the Chemical Substitution Rules
on Experimental Data. Although our predictive model was

Table 5. Validation of Moiety Exchanges Predicted to Improve GN Activity by Screening In Vitro E. coli MIC Data and
Permeation-Proxy Data Curated from ChEMBL for Every Added or Removed “Main Moiety” and Its “Opposite Moiety”
Counterparta

main moiety +/− exchange moiety ΔpMIC ± std pMIC Repeats inactive → active GP → GN (repeats)

primary amine addition ether 0.83 ± 0.61 225 50 28 (179)
primary amine addition carbonyl 1.07 ± 0.71 655 283 122 (396)
primary amine addition secondary amine 0.49 ± 0.63 2267 60 32 (2049)
lactone removal secondary amine 1.40 ± 0.15 5 0 0 (3)
lactone removal tertiary amine 0.78 ± 0.32 71 0 0 (39)
ester (carboxylate ester) removal secondary amine 0.81 ± 0.45 21 2 0 (13)
ester (carboxylate ester) removal carboxamide 1.23 ± 0.51 28 27 25 (26)
ester (carboxylate ester) removal ether 0.55 ± 0.62 26 3 1 (13)
ester (carboxylate ester) removal primary amine 0.89 ± 0.45 36 12 1 (25)
ester (carboxylate ester) removal tertiary amine 0.74 ± 0.35 106 5 4 (51)
carbonyl removal aryl chloride 0.67 ± 0.68 48 16 2 (16)
nitrile removal ether 0.33 ± 0.55 77 6 5 (34)
carboxamide removal thiophene 0.27 ± 0.27 8 0 0 (1)
carboxamide removal carboxylic acid 0.59 ± 0.33 42 25 5 (11)
carboxamide removal aryl chloride 0.42 ± 0.61 5 1 1 (2)
thiophene addition nitrile −0.04 ± 0.89 9 3 3 (4)
thiophene addition secondary amine −0.23 ± 1.09 31 4 1 (8)
thiophene addition aniline 0.42 ± 0.69 16 5 3 (6)
thiophene addition carbonyl 0.74 ± 0.40 39 4 2 (15)
tertiary carboxamide removal thiophene 0.37 ± 0.26 5 0 0 (1)
tertiary carboxamide removal secondary carboxamide 0.5 ± 0.35 35 6 1 (13)
aryl chloride addition nitrile 0.16 ± 0.48 53 8 2 (9)
aryl chloride addition tertiary amine 0.39 ± 0.65 52 16 2 (4)
aryl chloride addition aryl fluoride 0.02 ± 0.50 291 17 5 (49)
secondary amine addition tertiary amine 0.43 ± 0.68 1066 142 85 (755)
secondary amine addition ether 0.70 ± 0.51 203 53 37 (150)
secondary amine addition nitrile 1.19 ± 1.03 62 26 14 (35)
tertiary amine removal aryl chloride 0.39 ± 0.65 52 16 2 (4)
tertiary amine removal alkanol 0.45 ± 0.51 236 31 18 (99)
α,β-unsaturated carbonyl removal thiophene 1.04 ± 0.21 11 0 0 (6)
α,β-unsaturated carbonyl removal secondary amine 1.24 ± 0.69 25 4 0 (2)
α,β-unsaturated carbonyl removal aryl chloride 1.20 ± 0.74 7 3 0 (2)
aryl fluoride addition nitrile 0.17 ± 0.60 64 1 0 (16)
aryl fluoride addition tertiary amine 0.79 ± 0.64 56 21 2 (17)
aryl fluoride addition alkanol 0.33 ± 0.69 81 14 2 (23)

aAs defined in Table 4, identical matched pairs were identified in the ChEMBL datasets. “pMIC repeats” denotes the number of identified pairs,
“ΔpMIC” the average change in experimental pMIC, and “inactive → active”, the number of times the change in pMIC changed the core molecule
from GN-inactive (pMIC < 5) to GN-active (pMIC > 5) in ChEMBL dataset 1. “GP → GN” displays the number of times a core molecule is
altered from GN-inactive to GN-active in the subset, ChEMBL dataset 2, with the number of repeats for the respective pairs in this dataset shown
in parentheses. The full distributions of the change in pMIC for every transform are shown in the Supporting Information, Figure S3.
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initially trained on rigorously curated measured MIC data, the
statistical power of theMMPA we performed relies on the use of
additional synthetic data. It is important, therefore, to
independently validate our results on datasets obtained
exclusively from experimentally investigated compounds. We
thus screened in vitro data from the ChEMBL database for the
presence of the patterns we predict to be linked to GN activity
and permeation.29

The ChEMBL database merges MIC measurements obtained
using a range of different assay types and from many different
bacterial strains, including those in which bacterial permeation
factors such as porins or drug efflux pumps were altered or
deleted. The mixed composition of the ChEMBL dataset means
that it is not as suited for use as a training set as the more highly
curated databases, CDD and CO-ADD; however, after a careful
manual curation step, the data is arguably appropriate to serve as
a test set. We therefore collected all available inhibition data for
both S. aureus and E. coli from ChEMBL, standardized all
deposited inhibition units into pMIC, removed duplicated
datapoints, and deleted datapoints resulting from assays
involving mutated strains or strains with induced antibiotic
susceptibility. This resulted in 24 102 datapoints for E. coli and
35 802 for S. aureus (ChEMBL dataset 1). Subsequently, this
pMIC data was further curated to serve again as proxy for GN
permeation data according to our previously used approach (see
Methods, Data Curation), yielding 5009 GN-active compounds
(E. coli pMIC ≥ 5; S. aureus pMIC ≥ 5) and 2955 GN-inactive
compounds (E. coli pMIC < 5; S. aureus pMIC ≥ 5) (ChEMBL
dataset 2).
To ascertain if the chemical transformations identified earlier

increase the GN pMIC of a core molecule, we performed
MMPA directly on the E. coli pMIC values (ChEMBL dataset
1). Separately, MMPA was carried out on the new permeation-
proxy data to investigate if the transformations introduce
additional GN activity into GP-active molecules (ChEMBL
dataset 2). The MMPA was followed by substructure search,
matching any functional groups and moieties in the LHS and
RHS of each transformation in both datasets to the previously
identified activity-enhancing transforms that are likely due to
improved permeability.
Table 5 displays the statistics we obtained from screening the

ChEMBL datasets for each of the main moieties and their
exchange counterparts. As shown in the table, the ChEMBL in
vitro data contains a large number of examples for the molecular
substitutions that our previous computational analysis suggested
to enhance GN activity and permeation. Intriguingly, 89% (31/
35) of the computationally identified transforms indeed increase
the E. coli in vitro pMIC in ChEMBL dataset 1. Furthermore,
86% (30/35) of the transformations turn at least one compound
in the sets from GN-inactive to GN-active, and in 71% (25/35)
of transforms in ChEMBL dataset 2, we find at least one example
where the transformmodifies a GP-only active compound into a
compound that is active against both GP and GN bacteria.
The top row of Table 5 shows 225 occurrences (“pMIC

repeats”) in ChEMBL dataset 1 where a primary amine is gained
(“mainmoiety”) in favor of an ether group (“exchange moiety”).
These molecular transformations show an average positive
increase in the E. coli pMIC of 0.83 (ΔpMIC). Furthermore,
within those 225 examples, we find 50 cases in which this
functional group substitution turns a GN-inactive compound
into a GN-active molecule (according to our previously used
definition, from activity below 5 pMIC to greater than 5 pMIC;
“inactive→ active”). In the ChEMBL permeation-proxy dataset

(ChEMBL dataset 2), we find 179 examples for the same
molecular substitution. In 28 of these cases, a GP-only active
compound, by addition of primary amine in favor of an ether, is
modified to become a broad-spectrum active compound against
both GP and GN bacteria (“GP → GN”).

This independent screen of a large amount of experimental
data provides further evidence that the molecular modifications
suggested by our computational MMPA enhance GN activity,
and likely permeation in vitro. The vast majority of our
transforms are found to have a substantially positive effect on
the E. coli pMIC. Only two cases, exchanging thiophene for
nitrile or secondary amine, on average resulted in a negative
pMIC change. A further five transforms failed to convert inactive
compounds into active ones according to our pMIC definition
(e.g., removal of lactone in favor of secondary amine). A further
nine transforms did not convert compounds fromGram-positive
active into Gram-negative active (e.g., removal of tertiary
carboxamide in favor of thiophene), represented in the last two
columns in Table 5. In two cases, no examples for our predicted
exchanges were retrieved from the ChEMBL datasets (ether to
lactone and aryl chloride to tertiary carboxamide). Figure 4
displays five examples of compound pairs retrieved from the
ChEMBL database in which the identified transforms improve
GN activity. In all five examples shown, GN-inactive compounds
(pMIC < 5) are rendered GN-active (pMIC > 5) by the moiety
exchange. In addition, we show an exemplar transform, in which
the molecular exchange turns a compound with borderline GN
activity into a molecule with high GN activity.

Physicochemical Determinants. Many previous analyses
of GN activity have investigated the physicochemical character-
istics of compounds necessary to enable the crossing of the GN
outer membrane, often focusing on their hydrophobicity (log P)
and MW and the rigidity of the structures.14−16,18 We therefore
re-examined all of the chemical transformations that enhance
GN permeation for systematic changes in these parameters. The

Figure 3. Flowchart of the approach taken to derive properties of GN
activity and permeation. (1) Compounds with knownMIC values from
CDD and CO-ADD were rigorously curated to represent a proxy for
GN permeation, yielding GN-activity dataset 1. (2) The GN activity or
permeation data was interpreted using MMPA to correlate differences
in activity to structural features. (3) To supplement the experimentally
recorded data (limited by the size of the input data and the rigorous
curation process), a machine learning model was used to predict the
GN activity of compounds in large new datasets of 2.6M compounds
combined. For these molecules, the predicted GN-activity score
replaced recorded MIC/permeability data for MMPA. (4) The results
from MMPA were analyzed and grouped into molecular trans-
formations that substantially impact GN activity. (5) The derived
transformations were validated by analyzing their effect on
experimental GN- and GP-activity datasets retrieved from the
ChEMBL database.
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rigidity of a given molecule was assessed by determining its
number of rotatable bonds.
Table 6 shows that, while trends are observed for trans-

formations that lead to the addition or removal of a specific
group, trends between different types of transformations are
usually dissimilar. For example, all transformations in which a
primary amine is added reduce the hydrophobicity, whereas the
addition of aryl chloride increases hydrophobicity. On average,
only weak trends are seen overall, in which the log P is slightly
raised along with MW, while molecules with improved GN
activity are slightly more rigid.
Taken together, these findings confirm that simple

physicochemical parameters are not well suited to differentiate
between GN-active or permeable and non-permeable drugs due
to their low degree of separation. According to our results, the
presence or absence of specific chemical moieties, by contrast,
serves as a much better predictor of GN activity and enables an
interpretation of GN activity or permeability on the basis of
chemical properties. This is in agreement with recent meta-
studies of GN compound uptake, where no consensus about the
ideal physicochemical features optimizing permeability has been
reached.19

■ CONCLUSION

The development of new broad-spectrum antibiotics with
sufficient activity against bothGram-positive andGram-negative
pathogenic bacteria is essential to address the drug-resistance
problem emerging across a broad range of bacterial infections.
Drug permeation across the Gram-negative cell envelope has
been recognized as the primary obstacle in achieving a sufficient
drug concentration and target activity in Gram-negative
bacterial pathogens and is a result of a complex interplay of

multiple factors, including outer-membrane translocation and
efflux.4−6,10 Although previous attempts to derive simple rules
determining activity or permeation have had some success, there
is, so far, no consensus among these studies regarding the roles
of molecular features, which is likely primarily due to limitations
in the amount of permeation data analyzed.12,14−18

In the absence of large intracellular drug concentration
datasets, we set out to make use of sizable publicly available
bacterial MIC datasets, rigorously curated to reduce noise from
different experimental procedures and to optimally represent the
effect of GN bacterial permeation. ML was used to expand the
available dataset by synthetically generating new compound−
probability pairs from the known inhibition data. This dataset,
containing 2.6M compounds in total, was then analyzed for
chemical features that influence GN activity by using matched
molecular pair analysis. The results were validated by analyzing
available in vitro E. coli and S. aureus inhibition data from
ChEMBL.
Our analysis highlights a number of molecular substructures

that are consistently associated with enhanced GN activity.
These moieties include various amines, thiophenes, and halides,
and thus potentially expand the medicinal chemistry toolbox
beyond the previously suggested addition of terminal amine
groups to enhance GN permeation.18 We found that 86% of our
predictedmolecular modifications indeed improve E. coli growth
inhibition in the independently analyzed MIC data from
ChEMBL. Furthermore, in 76% of the cases they promote GN
bacterial permeation, according to our curated permeation
proxy.
In 2017, Richter et al. showed that ionizable nitrogen, or more

specifically, primary amines exert a positive effect on GN
permeation by using cellular concentration data obtained

Figure 4. Six example transforms from the ChEMBL datasets where a detected significant fraction exchange leads to increased GN activity. The dotted
line indicates where the moiety alteration takes place, while the main molecular core remains identical. The first five examples turn a GN-inactive
molecule into a GN-active compound according to our definition, while in the last example, a moderately GN-active molecule is modified into a highly
GN-active one. (Note that in some of the cases the transforms contain more than only a change in the functional groups or moieties by which we
identified them, but our identified substructures are the common denominator, emerging from large and diverse datasets.)
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through LC-MS/MS measurements.18,20 They also found that
molecular globularity and the number of rotatable bonds are
negatively correlated to permeation; i.e., flat, rigid compounds
displayed improved GN uptake. Our analysis highlights a wide
range of amine functions that improve GN activity, which
indicates that our computational model can successfully predict
GN permeability and suggest experimentally validated molec-
ular modifications to enhance uptake. Overall, we also find a
tendency of the more GN-active molecules to possess fewer
rotatable bonds, i.e. a greater rigidity; however, the effect is
moderate. A slightly positive correlation between the molecular
hydrophobicity and GN activity is observed in our study, which
is in keeping with two previous LC-MS/MS studies that directly
determined cellular accumulation.30,31 Our approach therefore

confirms several previous findings from experiments on
compound permeation, but at the same time substantially
widens the range of available modifications that can bemade to a
drug candidate to enhance its activity in GN bacteria.
The 2705 individual structural transforms that improve GN

activity (Table S1C) provide specific examples of compounds
and modifications that are optimizing a given core structure for
GN uptake. In order to aim for broader applicability, we
analyzed those transforms more deeply, in terms of recurring
functional groups and moieties, to identify moiety exchange
relationships (Table 4). These generalized moiety exchanges
may serve as a resource for medicinal chemists to guide
optimization and synthesis of other core molecules in a more
general way.

Table 6. Changes in Molecular Weight (MW), Hydrophobicity (log P), and Molecular Flexibility (Number of Rotatable Bonds)
Associated with the Molecular Substitutions We Identified to Enhance GN activity or Permeation for ChEMBL Datasets 1
(pMIC) and 2 (Permeation)

dataset 1 dataset 2

main moiety + /− opposite moiety
pMIC
repeats ΔMW Δlog P

Δno. rotatable
bonds

permeation
repeats ΔMW Δlog P

Δno. rotatable
bonds

primary amine addition ether 225 −17.82 −0.13 −0.69 179 −18.88 −0.1 −0.7
primary amine addition carbonyl 655 −13.16 −0.13 −0.3 396 −17.54 −0.01 −0.35
primary amine addition secondary amine 2267 −13.61 −0.34 −0.94 2049 −14.29 −0.37 −1
lactone removal secondary amine 5 39.27 −0.16 0.6 3 44.74 0.19 0.33
lactone removal amine, tertiary 71 39.36 0.46 0.85 39 46.04 0.78 0.69
ester (carboxylate
ester)

removal secondary amine 21 4.37 0.28 −0.19 13 1.8 0.08 −0.31

ester (carboxylate
ester)

removal carboxamide 28 −21.43 −1.51 −2.21 26 −23.58 −1.59 −2.31

ester (carboxylate
ester)

removal ether 26 −0.97 0.39 0.27 13 1.25 0.13 0.38

ester (carboxylate
ester)

removal primary amine 36 −20.52 −0.19 −0.64 25 −17.18 −0.08 −0.76

ester (carboxylate
ester)

removal tertiary amine 106 37.1 0.48 0.42 51 31.21 0.49 0.25

carbonyl removal aryl chloride 48 0.96 0.58 −0.94 16 13.08 0.94 −0.88
nitrile removal ether 77 11.85 −0.13 1.01 34 13.28 −0.48 0.94
carboxamide removal thiophene 8 9.1 2.35 −1 1 75.92 2.33 −1
carboxamide removal carboxylic acid 42 −4.82 0.44 0.71 1 −0.00 1.48 0.00
carboxamide removal aryl chloride 5 −15 0.88 −1.2 2 −3.58 1.15 −1.5
thiophene addition aniline 16 −15.92 0.77 −0.75 6 −15.65 0.86 −0.67
thiophene addition carbonyl 39 40.18 1.34 −0.26 15 47.68 1.39 −0.4
tertiary
carboxamide

removal thiophene 5 11.13 2.11 −0.8 1 75.92 2.33 −1

tertiary
carboxamide

removal secondary
carboxamide

35 −22.13 −0.62 0.83 13 −23.51 −0.57 0.54

aryl chloride addition nitrile 53 17.6 0.89 0 9 24.96 0.94 0
aryl chloride addition tertiary amine 52 2.07 1.15 −0.77 4 18.13 0.81 −1.25
aryl chloride addition aryl fluoride 291 16.1 0.55 0 49 14.46 0.55 0
secondary amine addition tertiary amine 1066 −15.1 −0.3 −0.05 755 −14.17 −0.33 0.07
secondary amine addition ether 203 −13.83 0.21 −0.28 150 −11.58 0.2 −0.3
secondary amine addition nitrile 62 4.03 −0.07 0.35 35 12.96 0.02 0.91
tertiary amine removal aryl chloride 52 2.07 1.15 −0.77 4 18.13 0.81 −1.25
tertiary amine removal alkanol 236 −21.80 −0.44 −0.22 99 −27.61 −0.69 −0.62
α,β-unsaturated
carbonyl

removal thiophene 11 50.58 1.07 0.45 6 56.97 1.33 0

α,β-unsaturated
carbonyl

removal secondary amine 25 −9.1 0.05 0.96 2 43.07 0.21 0

α,β-unsaturated
carbonyl

removal aryl chloride 7 28.52 0.75 0 2 30.48 0.7 0

aryl fluoride addition nitrile 64 −6.57 0.2 −0.03 16 −6.59 0 −0.06
aryl fluoride addition tertiary amine 56 −10.79 0.49 −0.91 17 −19.07 0.04 −1
aryl fluoride addition alkanol 81 7.36 0.74 −0.35 23 3.11 0.29 −0.61
average 3.67 0.43 −0.23 11.3 0.45 −0.37
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Notable current limitations of our work are the derivation of
our methodology from data on two exemplar bacterial species, S.
aureus and E. coli, to maintain minimal noise levels. It is therefore
not yet possible to predict how well these results generalize
across different GN species. Furthermore, the compounds have
not yet been grouped into their likely mode of action or bacterial
target. This could inform, for example, if permeation across the
cytoplasmic membrane is necessary, which may influence the
optimal chemistry needed for permeation to the target. An
additional point our analysis cannot fully address at the moment
is the role of other factors that may lead to increased GN activity,
beyond structural or physicochemical changes between the
compounds that influence drug uptake, such as differences in the
chemical stability of the transformed compounds. These points
will be addressed in future studies, depending on the availability
of publicly accessible datasets of sufficient size and quality.

■ EXPERIMENTAL SECTION
The overall workflow of the approach we followed is summarized in
Figure 3. Publicly available minimal inhibitory concentration (MIC)
data was obtained and carefully curated to express it as data suitable to
serve as proxy for GN permeation (see below).29,32−34

An initial cycle of MMPA showed that the curated initial dataset was
not large enough to comprise a sufficient number of significant
molecular structural changes (transforms) that would allow us to
interpret the GN activity or permeation data using MMPA alone. We
therefore used ML to generate a large amount of additional synthetic
data based on the curated dataset, in an approach similar to that
described by Fu et al.35 We trained a ML model on the curated
compounds and predicted a GN-activity score, reflecting a proxy for the
probability of GN permeation, for 2.6M new molecules. We then
performed MMPA on 60 000 rationally selected molecules from the
expanded dataset to identify transforms that have a substantial influence
on GN activity and emerge from a statistically significant number of
structural modifications to molecular cores. Further analysis of the
differing molecular structures in these transforms yielded the major
chemical determinants of GN activity. Following independent
validation of the resulting transforms by comparing them to data
retrieved from the ChEMBL database, our findings suggest that some of
the key determinants identified in our study can serve as rules to guide
molecular design for enhanced GN activity and permeation.29

Data Curation. MIC data for compounds acting on GN and GP
pathogens was retrieved from the Collaborative Drug Discovery
(CDD) public database, which contains data on antibiotic activity from
a variety of public and proprietary sources, as well as from the
Community for Open Antimicrobial Drug Discovery (CO-ADD), an
open access database which hosts screening results for compounds with
potential antimicrobial activity.29,32−34 To reduce noise levels in data
arising from different types of measurements and on different species,
we selected two paradigmatic pathogens as representatives for each type
of cell envelope: E. coli for GN bacteria and S. aureus for GP bacteria. By
focusing on these two species, we obtained the largest datasets for
individual species, which at the same time originate from only a small
range of different experimental procedures.
Importantly, the molecular targets for existing antibiotics inside the

cells of S. aureus and E. coli are commonly thought to be homologous.
This assumption is underpinned by the action of known broad-
spectrum antibiotics that act on analogous targets across both GN and
GP bacteria such as β-lactams, quinolones, tetracyclins, and other
antibiotic classes.36−38 In turn, this means that reduced activity levels of
individual antibiotics within GN bacteria are likely to be caused by their
diminished ability to permeate the GN cell envelope, and in this way the
MIC data can be transformed to yield a proxy for permeability.
Accordingly, we curated the retrieved MIC data (Table 2, initial

data) to optimally represent GN permeability. Compounds were split
into two groups: those that are active in GN bacteria and can therefore
permeate the GN cell wall and those that cannot. An activity threshold
was imposed at pMIC ≤ 5 (pMIC = −log10(MIC [μM] × 10−6)). This

cutoff corresponds to anMIC value of 10 μM, which represents a lower
threshold of high to medium activity for small-molecule inhibitors,
removing compounds which display only low activity. A similar
boundary has been used in previous quantitative structure−activity
relationship (QSAR) studies, such as that by Tripathy et al.39

Furthermore, imposing an activity threshold allowed us to convert
the continuous data contained in MIC or pMIC values into binary
labels for every compound. This enabled the use of a classification
machine learning model which entails a range of advantages, including
computational performance and prediction accuracy. By contrast,
regression models often result in a higher degree of data overfitting and
therefore reduce the quality of predictions.

Using this threshold, labels were assigned to all compounds: “1”, the
compound permeates both GN and GP cell walls and is active against
both types of bacteria; “0”, the compound permeates the GP but not the
GN cell wall (or is otherwise not active against GN bacteria) and shows
activity only on GP bacteria.

By selecting compounds that are proven to be active against S. aureus,
but not necessarily against E. coli, a differentiating property was created,
in which the difference between compounds labeled as “0” and “1” and
the barrier to activity against E. coli are most likely to be caused by
different permeation rates across the cell envelope (including both low
inward uptake and active efflux).

Table 1 summarizes the compound curation and labeling procedure.
Based on the employed criteria, only compounds that show at least
medium-level activity against S. aureus, and which have also been tested
against E. coli (as either actives or non-actives), are retained and labeled.

Matched Molecular Pair Analysis. MMPA compares the
properties of pairs of molecules that differ only by a small structural
change, known as the transformation (Figure 2).40 MMPA can be
applied to large molecular datasets, generating a high number of pairs,
and is able to compare multiple molecular properties at once, which
makes MMPA a convenient multi-parameter optimization tool.
Conventionally, MMPA is used to analyze compounds with associated
experimentally measured property or activity values.

Similar approaches have previously been used in a study of the
prediction of transform activity in an absorption, distribution,
metabolism, and excretion (ADME) dataset, where a QSAR model
was used as a scoring function forMMPA.41 Additionally, a recent study
predicted log D7.4 values by combining ML and MMPA on a dataset
expanded by synthetically generated data, validating this type of
approach.35 By linking changes in structure to changes in property,
MMPA has been shown to be able to act as an inverse QSAR technique
in a way that allows chemically intuitive deconvolution of structure−
activity relationships to be performed easily.42 MMPA was performed
in MCpairs (Medchemica Limited, Macclesfield, UK, 2020) and
employed both maximum common substructure and fragment and
index methods, with settings described previously by Lukac et al.43

Synthetic Data Generation. The validity of ML models and
analysis methods such as MMPA relies on the availability of large and
diverse datasets. Publicly available bacterial permeation datasets are
often too small to be leveraged in a reliable way. In comparison, the
permeation-proxy dataset we collected, curated from inhibition activity,
is to our best knowledge currently the largest of its type and allowed us
to build a reliable ML predictor of GN activity. Alongside its use as a
predictor for the activity of any given new molecule, the model also
allows for the synthetic expansion of the initial dataset by predicting the
learned property on large collections of new compounds. Importantly,
it allows the underlying chemical features to be amplified and detected
by further statistical analysis, even in the case where the original datasets
are of limited size.

In the pioneering work by Stokes et al.,22 a ML method, Chemprop,
was recently used to discover structurally new antibiotics, including a
GN-active compound named Halicin. The Chemprop model uses a
directed-message-passing neural network to aggregate information
from features of local atoms and bonds for every molecule in the
training set, represented as a graph. In our case, this molecular
information was combined with the associated activity/permeation
label for each compound which was derived from the input datasets.
The Chemprop model, after training, is then capable of predicting the
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learned property, i.e., activity, in new molecules that are not part of the
initial training and test sets.22,44

To generate synthetic data representing a proxy for GN permeability,
we used the labeled and curated compounds as classification data,
setting aside 15% of the compounds with balanced class distribution as
a test set. Training and testing was performed using Chemprop.22,44

Before training our model, a built-in method for hyperparameter
optimization, which uses a Bayesian optimization algorithm, was used
on the training data. To optimize the prediction, we trained an
ensemble of five ML models and carried out 5-fold cross-validation. To
promote wider generalization of the ensemble, the molecular
representations were supplemented by additional physicochemical
descriptors as calculated by the chemoinformatic software package
rdkit.45 Both hyperparameter optimization and training were carried
out on a local GPU cluster.
The trained model was then applied on independent external

datasets to predict the GN activity of a given compound. We used three
external datasets: ENM_1, ENM_2, and ENM_3, originating from the
chemical synthesis company Enamine, consisting of about 2.6 million
compounds altogether. The datasets ENM_1, ENM_2, and ENM_3
correspond to “HTS”, “Advanced”, and “Premium”, respectively, in the
Enamine documentation.46 These datasets represent a wide range of
physicochemical properties as well as a large variety of functional
groups, covering well the chemical space of the initial compounds
(Figures S1 and S2). The predicted GN-activity score was then used as
the synthetically generated activity measure in the subsequent MMPA
of these new datasets.
Due to the high computational cost of identifying molecular pairs in

the large dataset by MMPA, we pre-processed the resulting synthetic
data as follows. The similarity of the compounds was calculated by
converting all compounds into extended connectivity fingerprints,
where molecular structures are represented by bits in a binary vector.47

The structures were then compared to each other by using the Jaccard−
Tanimoto coefficient, which computes intersections of bits in the two
binary vectors.48 To optimize the selection of molecular pairs, i.e.,
compounds with a common core and therefore high molecular
similarity, compounds within each dataset that exhibited no or low
molecular similarity (at a 50% threshold) to the 10 000 highest-scoring
compounds for permeability were discarded. From the remaining
compounds (with above 50% similarity to the top 10 000 compounds),
the 10 000 molecules with the lowest GN-activity score were retained
alongside the 10 000 highest-scored compounds. In this way, we
maximized both the number of molecular pairs among the compounds
in the pre-processed set and their score difference. This selection
resulted in 20 000 compounds for each of the three ENM datasets,
totaling 60 000 compounds.
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