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Key points summary 

 The role of the 1 strand in GABAA receptor function is unclear. It lies anti-parallel to the 2 

strand, which is known to participate in receptor activation.  

 Molecular dynamics simulation revealed solvent accessible residues within the β1 strand of 

the GABAA β3 homopentamer that might be amenable to analysis using the substituted Cys 

accessibility method. 

 Cys substitutions from Asp43 to Thr47, in the GABAA α1 subunit showed that D43C and T47C 

reduced apparent potency of GABA. F45C caused a bi-phasic GABA concentration-response 

relationship and increased spontaneous gating. 

 Cys43 and Cys47 were accessible to MTSEA modification, while Cys45 was not. Both GABA 

and the allosteric agonist propofol reduced MTSEA modification of Cys43 and Cys47. 

 By contrast, modification of Cys64 in the 2 strand loop D was impeded by GABA but 

unaffected by propofol.  

 These data reveal movement of 1 strand loop G residues during agonist activation of the 

GABAA receptor. 
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Abstract 

The GABAA receptor α subunit β1 strand runs anti-parallel to the 2 strand, which contains loop D, 

known to participate in receptor activation and agonist binding. However, a role for the β1 strand 

has yet to be established. We used molecular dynamics simulation to quantify the solvent accessible 

surface area (SASA) of β1 strand residues in the GABAA β3 homopentamer structure. Residues in the 

complementary interface equivalent to those between Asp43 and Thr47 in the 1 subunit have an 

alternating pattern of high and low SASA consistent with a β strand structure. We investigated the 

functional role of these β1 strand residues in the α1 subunit by individually replacing them with Cys 

residues. D43C and T47C substitutions reduced the apparent potency of GABA at α1β2γ2 receptors 

by around 50-fold and 8-fold, respectively, whereas the F45C substitution caused a biphasic GABA 

concentration-response relationship and increased spontaneous gating. Receptors with D43C or 

T47C substitutions were sensitive to MTSEA modification. However, GABA-evoked currents 

mediated by α1(F45C)β2γ2 receptors were unaffected by MTSEA, suggesting that this residue is 

inaccessible. Both GABA and the allosteric agonist propofol reduced MTSEA modification of 

α1(D43C)β2γ2 and α1(T47C)β2γ2 receptors indicating movement of the β1 strand even during 

allosteric activation. This is in contrast to α1(F64C)β2γ2 receptors where only GABA, but not 

propofol reduced MTSEA modification. These findings provide the first functional evidence for 

movement of the β1 strand during gating of the receptor and identify residues that are critical for 

maintaining GABAA receptor function. 

Abbreviations list 

DMEM, Dulbecco modified Eagle’s medium; HEK-293, human embryonic kidney 293 cell; MD, 

molecular dynamics; MTS, methanethiosulfonate; MTSEA, 2-aminoethyl methanethiosulfonate; 

pLGIC, pentameric ligand gated ion channel; SASA, solvent accessible surface area; SCAM, 

substituted cysteine accessibility method; TM, transmembrane; τw, weighted tau.   
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Introduction 

γ-Aminobutyric acid type A (GABAA) receptors are members of the Cys-loop family of pentameric 

ligand-gated ion channels (pLGICs). GABAA receptors are assembled from 19 different subunits. The 

most common synaptic GABAA receptor is comprised of α1, β2 and γ2 subunits (Whiting et al., 1995).  

GABAA receptors have a large extracellular domain, housing the orthosteric ligand binding site, and 

four transmembrane (TM) domains (TM1-4), which contain binding sites for allosteric agonists and 

several non-competitive antagonists. TM2 lines the Cl--selective channel pore. Like most pLGICs 

GABAA receptors also have a large intracellular domain, mainly composed of the TM3-4 loop 

(Baptista-Hon et al., 2013).  

The orthosteric binding site, located at the interface between adjacent subunits (Smith & Olsen, 

1995; Cromer et al., 2002), is lined by residues within six non-continuous loops (A-F) which 

participate in binding (Boileau et al., 1999; Holden & Czajkowski, 2002; Wagner et al., 2004; 

Goldschen-Ohm et al., 2011; Tran et al., 2011) and gating (Boileau et al., 2002; Newell & Czajkowski, 

2003; Venkatachalan & Czajkowski, 2008; Szczot et al., 2014). In GABAA receptors, the primary 

interface contributes loops A, B and C, from the β subunit, while the complimentary interface 

contributes loops D, E and F, from the α subunit. These loops are contained within an anti-parallel β 

sandwich structure, which makes up much of the N-terminal domain. 

Several pLGIC structures have recently been solved, some in the presence of agonists providing an 

insight into the architecture of the orthosteric binding site. A structural model of C. elegans GluCl 

implicates β1 strand Arg37 in glutamate binding (Hibbs & Gouaux, 2011). This led to the proposal of 

a seventh binding loop, termed loop G. However, the equivalent β1 strand residue in A. californica 

GluCl (Leu79) is not involved in its binding to glutamate or other amino acid agonists including GABA, 

suggesting that a role for the β1 strand in agonist binding may be restricted to the C. elegans GluCl 

(Blarre et al., 2014). Interestingly, replacement of A. californica GluCl Leu79 by Arg resulted in 

abolition of glutamate evoked currents, highlighting the importance of amino acids in the β1 strand 

to receptor function. A comparison of GluCl structures in presumed open and closed conformations 

reveals that the β1 and β2 strands, as well as the β1-β2 loop, move towards the TM2-3 loop during 

gating (Althoff et al., 2014). This movement appears to precede the structural rearrangement of the 

TM domains that allow channel opening (Calimet et al., 2013). A similar conformational change has 

also been described in the recent structures of a zebrafish glycine receptor derived by cryo-electron 

microscopy (Du et al., 2015).  



5 
 

Residues in the β1 strand of the recently solved GABAA β3 homopentamer structure are not 

implicated in binding its agonist, benzamidine (Miller & Aricescu, 2014). However, residues in loop D 

of the anti-parallel β2 strand are, and this region of the 1 subunit lies within the GABA binding 

pocket in 122 GABAA receptors (Boileau et al., 1999; Holden & Czajkowski, 2002). Furthermore, 

the loop D residue Phe64 participates in gating (Szczot et al., 2014). The use of the substituted Cys 

accessibility method (SCAM) revealed a series of β2 strand residues within loop D that are accessible 

within the binding pocket. Consistent with its role in agonist binding, residue 64 became less 

accessible to methanethiosulfonate (MTS) modification when receptors were activated by GABA. It 

is likely that residues within the 1 subunit β1 strand are also solvent accessible through the ligand 

binding pocket since they lie adjacent to the β2 strand. As a result, Cys substituted β1 strand 

residues may also be amenable to SCAM. 

In this study, we first examined solvent access to the GABAA β3 homopentamer using molecular 

dynamics (MD) simulation. We subsequently used the simulations as a guide to investigate the 

functional consequences of Cys substitutions at five of the equivalent β1 strand residues in the 1 

subunit of 122 GABAA receptors. The introduction of Cys at these positions enabled us to 

examine their accessibility in the absence and presence of receptor activation.  
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Methods 

Cell culture and transfection - Human embryonic kidney 293 (HEK-293) cells were maintained in 

Dulbecco Modified Eagle’s Medium (DMEM) supplemented with 10% fetal bovine serum and 100 µg 

ml-1 penicillin and 100 units ml-1 streptomycin at 37oC and 5% CO2. Cells were seeded at low density 

in 35 mm dishes for electrophysiology. Transfections were performed by calcium phosphate 

precipitation, using 1 µg total cDNA per dish, as described previously (Baptista-Hon et al., 2013). 

cDNAs encoding wild type (WT) and mutant mouse GABAA subunits were in the pRK5 mammalian 

expression vector. For heteromeric expression of GABAA α1β2γ2 subunits, a 1:1:1 transfection ratio 

was used. cDNA encoding enhanced green fluorescence protein (in pEGFP vector, 0.1 µg) was 

included to identify successfully transfected cells using fluorescence microscopy. Cells were washed 

with media 16 h after transfection and used after 48 to 72 h. All tissue culture reagents were 

obtained from Invitrogen (Paisley, UK). 

Mutagenesis of GABAA α1 subunits – Single point mutations were performed by overlap extension 

polymerase chain reaction (PCR) (Heckman & Pease, 2007). PCR products were digested using SmaI 

restriction endonuclease and ligated into pRK5 vector. All mutagenesis reactions and ligations were 

verified using agarose gel electrophoresis and constructs were sequenced prior to functional 

characterisation (Genetics Core Services, University of Dundee). All PCR and molecular cloning 

reagents were obtained from Fermentas (Thermo-Fisher, Loughborough, UK). 

Electrophysiology - The whole-cell configuration of the patch-clamp technique was used to record 

GABA-evoked currents from HEK-293 cells expressing WT α1β2γ2 GABAA receptors or receptors 

containing Cys-substituted α1 subunits. Recording electrodes were fabricated from borosilicate glass 

capillaries, which when filled with intracellular solution had resistances of 1.3 – 2.3 MΩ for whole-

cell recordings. The electrode solution contained (in mM): 140 CsCl, 2 MgCl2, 1.1 EGTA, 3 Mg-ATP, 10 

HEPES (pH 7.4 with CsOH). The extracellular solution contained (in mM): 140 NaCl, 4.7 KCl, 1.2 MgCl2, 

2.5 CaCl2, 10 HEPES, 10 glucose (pH 7.4 with NaOH). Cells were voltage clamped at an electrode 

potential of -60 mV. Currents were evoked by rapid application of GABA using the three-pipe 

Perfusion Fast Step system (Warner Instruments, CA, USA), as described previously (Baptista-Hon et 

al., 2013).  

All electrophysiological data were recorded using an Axopatch 200B amplifier. Data were low pass 

filtered at 2 kHz, digitised at 20 kHz using a Digidata 1320A interface and acquired using pCLAMP8 

software (all from Molecular Devices, CA, USA). 
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Substituted cysteine accessibility method (SCAM) – The cysteine sulfhydryl-specific modifying effect 

of a methanethiosulfonate (MTS) reagent was determined using 2-aminoethyl methanethiosulfonate 

(MTSEA) or phenylmethanethiosulfonate (PhMTS; Toronto Research Chemicals, Toronto, Ontario, 

Canada). Unless otherwise indicated, HEK-293 cells transfected with WT or Cys-substituted subunits 

were exposed repeatedly to an EC50 concentration of GABA to evoke stable baseline currents (Icontrol). 

Freshly diluted MTSEA (up to 10 mM) was then applied episodically to cells prior to their GABA EC50 

exposure. Altered current amplitudes following MTSEA exposure reveals accessibility to sulfhyrdryl 

modification (Imodified). The extent of modification was measured as a percentage change:  

         
                  

        
     

Cells were subsequently exposed to the reducing agent dithiothreitol (DTT; 10 mM) to reverse 

modification by MTSEA. 

Rates of MTSEA modification were measured using empirically determined concentrations of MTSEA, 

which produced cumulative changes in the amplitude of GABA-evoked currents that reached steady 

state within the duration of the recording. MTSEA was applied episodically for intervals between 0.1 

s and 2 s, prior to a challenge with EC50 GABA. In all cases, the steady-state current amplitude 

reached that of Imodified when a saturating concentration of MTSEA was used, indicating that the 

modification reaction had reached completion. To determine whether the rate of MTSEA 

modification of the substituted cysteine can be altered in the presence of agonists or allosteric 

agonists, a maximal concentration of GABA (EC100), or an activating concentration of propofol (10 µM) 

was simultaneously applied with MTSEA.  

MD simulations - MD simulation was carried out with the Gromacs simulation software version 4.67 

(Pronk et al., 2013). The ambersb99_ildn force field (Hornak et al., 2006; Lindorff-Larsen et al., 2010) 

for amino acids and the Berger force field for POPC lipids (Berger et al., 1997) were applied. 

Temperature and pressure were kept constant at 298 K and 1 bar, using the v-rescale thermostat 

(Bussi et al., 2007) and the Parrinello-Rahman barostat (Parrinello & Rahman, 1981) with coupling 

constants of 0.5 ps and 2 ps, respectively. Electrostatic interactions were computed using the 

Particle Mesh Ewald (PME) method with a real space cut-off of 12 Å. Van der Waals (VdW) 

interactions were calculated using a cut-off of 12 Å.  The LINCS algorithm (Hess et al., 1997) was 

applied to constrain all bonds. Virtual sites (Feenstra et al., 1999) were employed for hydrogen 

atoms permitting us to use a simulation timestep of 5 fs. We simulated two receptor/membrane 

systems. The total sampling time was 1.64 µs.  
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pKa values of all titrable groups of the GABAA 3 homopentamer  (PDB-ID: 4COF) (Miller & Aricescu, 

2014) were calculated using the H++ webserver (Anandakrishnan et al., 2012) and checked manually. 

The transmembrane domain of the protein was first aligned to a POPC bilayer, using the program 

LAMBADA (Schmidt & Kandt, 2012) and slightly moved manually to match protein-lipid interactions 

(Contreras et al., 2011). The protein was inserted into the membrane, employing the program 

InflateGRO2 (Schmidt & Kandt, 2012). A NaCl concentration of ~180 mM was added and additional 

counter ions were introduced to neutralize the simulation system.  

Data analysis - The peak amplitudes of agonist-evoked currents were measured using Clampfit10 

software (Molecular Devices, CA, USA). Individual relationships of current amplitude to GABA 

concentration were fitted with a logistics equation: 

          
   

                        
 

From which GABA EC50 and Hill slope (nH) values were determined. 

The rate of MTSEA modification of Cys substituted receptors was measured by fitting single or 

double exponential functions to peak current amplitude data following cumulative MTSEA 

applications. The double exponential function is defined by: 

                
  

       
  

    

Where τf and τs represent the fast and slow time constants, respectively. Af and As represent the 

proportion of the fast and slow components, respectively, such that Af and As sum to 1 - plateau. 

Rate of MTSEA modification are provided as weighted τ (τw) values, calculated using: 

               

Pseudo first-order rate constants were derived from a modified single or double exponential fit to 

peak current amplitude data following MTSEA applications. The double exponential function is 

defined by: 

                                   

Where Kf and Ks represent the fast and slow first-order rates, respectively. Af and As represent the 

proportion of the fast and slow components. Since all amplitude data are normalised to IGABA at t = 0, 

Af and As sum to 1 - plateau. Second-order rate constants were obtained by dividing K by the 

concentration of MTSEA used (Holden & Czajkowski, 2002). 
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The solvent accessible surface area (SASA) was calculated as described previously (Eisenhaber et al., 

1995) using data from the MD simulations. The solvent accessible area was graphically represented 

using trj_cavity (Paramo et al., 2014). All figures containing molecular information were produced 

with VMD (Humphrey et al., 1996). 

Statistics - Data are presented as mean ± S.E.M. or S.D. as indicated. Differences in means of three or 

more groups were compared using one-way analysis of variance (ANOVA), with a post hoc Tukey or 

Dunnet’s test, as appropriate. Pairwise comparisons were performed using the student t-test. In all 

cases P < 0.05 was considered statistically significant. Statistical analyses were performed using 

GraphPad Prism 5 (GraphPad Software, San Diego, California, U.S.A.). 
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Results 

Residues in the β1 strand of the β3 homopentamer are solvent accessible 

Changes in the accessibility of residues during GABAA receptor activation have been determined 

using SCAM (Boileau et al., 1999). Two criteria are required for successful SCAM. First, the 

substituted Cys must be solvent accessible and second it must participate in a receptor function that 

is affected by modification. Both of these criteria apply to the GABAA receptor α1 subunit β2 strand 

loop D residue at position 64. This residue is solvent accessible and its modification by MTS reagents 

led to a reduction in GABA-evoked current amplitudes in receptors harbouring the α1(F64C) 

substitution (Boileau et al., 1999). Phe64 participates in GABA binding and efficacy (Boileau et al., 

1999; Szczot et al., 2014). While residues in the β1 strand do not participate in agonist binding to the 

GABAA β3 homopentamer structure, we examined whether they are likely to be accessible through 

the binding pocket (Miller and Aricescu, 2014). We performed MD simulations of the whole protein 

but focused our analysis on residues located within the β1 strand of the β3 homopentamer (Fig. 1A).  

Our simulations reveal that a number of residues in the β1 strand of the GABAA 3 homopentamer 

are solvent accessible. A representative snapshot of the access pathways of water to the agonist 

binding site observed in the simulations is shown in Figure 1B. Consistent with previous reports, the 

critical β2 strand loop D residue, equivalent to 64 in the α1 subunit, which is Tyr62 in the β3 

homopentamer, is also accessible. We quantified the solvent accessible surface area (SASA) for these 

residues (Fig. 1C). The SASA values for residues from 41 to 45 are characteristic of a β-strand 

structure with an alternating pattern of accessibility. While residues Asn41, Asp43 and Ala45 display 

significant solvent accessibility, Ile42 and Ile44 are inaccessible. The number of water molecules 

observed to be in contact with the residues throughout our simulations agrees well with their SASA 

(data not shown). Other residues, e.g. Cys37, Ser46, Asp48, Met49 and Ser51 also have significant 

SASA values and may therefore be accessible. However, inspection of the model reveals that the 

highly accessible Cys37 and Met49 are located outside the binding pocket at the surface of the 

receptor and within the outer vestibule, respectively. Furthermore, in the β3 homopentamer model, 

the β1 strand has a sharp kink after residue 45, dipping towards the vestibule. 

1 strand residues influence the apparent potency of GABA  

Our MD simulations (Fig. 1) suggest that several residues within the β1 strand of GABAA receptors 

are part of a solvent accessible pocket contiguous with the ligand binding domain. We investigated 

the functional consequences of individual Cys substitutions from Asp43 to Thr47 in the α1 subunit. 

These residues are homologous to those between Asn41 and Ala45 in the GABAA β3 homopentamer 
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according to our sequence alignment (Fig. 1A). For comparison, we also included Cys-substituted 

Phe64 in loop D of the β2 strand in our analysis. WT or Cys substituted α1 subunits were transiently 

expressed in HEK-293 cells with β2 and γ2 subunits. Representative examples of GABA-evoked 

currents mediated by Cys substituted GABAA receptors are shown in Figure 2A. GABA concentration-

response relationships are plotted in Figure 2B. Logistic functions fitted to the data reveal rightward 

shifts in the GABA concentration-response relationship for some Cys-substituted receptors. The 

average best-fit parameters derived from logistic functions fitted to data recorded from several 

different cells are summarised in Table 1. Consistent with previous reports, 1(F64C)22 receptors 

displayed a large increase in EC50 (P < 0.0001; t-test vs WT 122 receptors), confirming an 

important role for this β2 strand residue in GABAA receptor function. For β1 strand Cys-substituted 

122 receptors, one-way ANOVA with a Dunnet’s comparison revealed a significant difference in 

GABA EC50 between 1(D43C)22 and WT 122 receptors (P < 0.0001; Table 1). α1(I44C)β2γ2 

and α1(T47C)β2γ2 receptors showed tendencies towards increased EC50 values, but these were not 

significantly different to WT. 1(V46C)22 receptors had EC50 values indistinguishable from WT 

122 receptors. The Hill slope values for these Cys substituted GABAA receptors were similar to 

that of WT 122 receptors (Table 1). Like 1(F64C)22, both 1(D43C)22 and 1(T47C)22 

receptors had reduced GABA-evoked peak current densities compared to WT which were 

statistically significant (P < 0.0001 and P < 0.05 respectively; one-way ANOVA with post hoc Dunnet’s 

comparison with 122 receptors; Table 1). The Cys substitution in 1(F45C)22 receptors 

produced more complicated changes in function described in the following section. 

The 1 F45C substitution causes a biphasic GABA concentration-response relationship and 

spontaneous gating 

The GABA concentration-response relationship for 1(F45C)22 receptors is shown in Figure 3A, 

with representative examples for GABA-evoked currents shown in the inset. A single component 

logistic function provided an inadequate representation of the concentration-response relationship 

for GABA-evoked currents mediated by 1(F45C)22 receptors. By contrast, a two-component 

logistic function provided a good fit across the entire GABA concentration range (solid black line; Fig. 

3A). An F-test applied to statistically discriminate between the two approaches revealed that the 

two-component logistic function provided a significantly improved fit to the data (P = 0.025). The 

solid grey lines in Figure 3A illustrate the two components of the GABA concentration-response 

relationship. The logistic fit for WT 122 receptors is also reproduced here (dashed grey line) for 

comparison. Table 1 contains the values derived from the two-component logistic function 
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consistent with high and low apparent potency components for GABA-evoked activation of 

1(F45C)22 receptors. 

GABAA receptors with high levels of spontaneous gating generally have a higher sensitivity to GABA 

(Mortensen et al., 2003; Hadley & Amin, 2007). The high apparent potency component of GABA 

activation of 1(F45C)22 receptors may therefore be associated with spontaneous activity. We 

investigated the possibility of spontaneous gating by recording the inhibition of basal currents by 

picrotoxin (PTX) in WT 122 and 1(F45C)22 receptors. Figure 3B shows representative 

examples of maximally effective GABA-evoked currents (grey trace) and inhibition of basal currents 

by PTX (black trace). WT 122 receptors display very little PTX inhibited basal current (Fig. 3B 

inset). By comparison, the magnitude of PTX inhibited basal current in 1(F45C)22 receptors was 

large (Fig. 3B inset). We quantified spontaneous current as the magnitude of the PTX component 

(IPTX) as a percentage of the total amount of current (IGABA + IPTX). The maximum GABA-evoked current 

densities in WT 122 and 1(F45C)22 receptors did not differ significantly (Table 1). Therefore 

it is unlikely that the maximum efficacy of GABA is altered by the F45C substitution. The mean 

IPTX/Itotal values are shown in Figure 3C. 1(F45C)22 receptors had an increased proportion of 

spontaneous current from 0.05 ± 0.02% (n = 5) in WT 122 receptors to 0.52 ± 0.11% (n = 10). The 

difference was statistically significant (P = 0.014; t-test). These data suggest that F45C substitution 

increased spontaneous gating and therefore Phe45 in the β1 strand plays critical and complex roles 

in GABAA receptor function. 

Several residues in the 1 strand of the GABAA α1 subunit are accessible to MTSEA modification 

β1 strand residues in the GluCl  subunit (Hibbs & Gouaux, 2011) and GABAA β3 homopentamer 

(Miller & Aricescu, 2014) models have side-chains facing into the orthosteric binding pocket. Our MD 

simulation data demonstrate that residues in the GABAA β3 homopentamer, equivalent to amino 

acids 43 – 47 in the 1 subunit, are solvent accessible (Fig. 1C). Furthermore, receptors containing 

1 subunit D43C, F45C, T47C substituents all exhibit functions distinguishable from WT receptors 

(Figs 2 and 3 and Table 1). Therefore, 1 subunit 1 strand residues may be accessible to MTS 

reagents and their modification may alter function. 

We used SCAM to investigate whether the substituted cysteine residues in the β1 strand of the 

GABAA receptor are accessible to the sulfhydryl reagent, MTSEA. The use of a similar approach 

previously in Xenopus oocytes demonstrated accessibility of substituted cysteines in 1(F64C) 

containing GABAA receptors (Boileau et al., 1999; Holden & Czajkowski, 2002). We adapted the 
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technique for use in whole-cell patch-clamp recordings from HEK-293 cells using rapid application of 

GABA and MTSEA (see Methods), and used 1(F64C)22 receptors for comparison. 

We first tested whether MTSEA (10 mM) modulates GABAA receptors containing WT α1 subunits (Fig. 

4A). Control currents were evoked by an EC50 concentration of GABA (10 µM) in HEK-293 cells 

expressing α1β2γ2 GABAA receptors. Modification by MTSEA (10 mM) was tested by pre-application 

for 2 s prior to GABA. Five applications were tested, such that cells were exposed to MTSEA 

cumulatively for 10 s. The amplitudes of GABA-evoked currents appeared modestly enhanced 

following MTSEA treatment in some cells, but the mean did not significantly differ from that of 

controls (n = 6). We next confirmed that MTSEA (2 mM) modifies the function of1(F64C)22 

receptors. MTSEA substantially reduced the current amplitude evoked by an EC50 concentration of 

GABA (10 mM; Fig. 4A). The application of the reducing agent DTT (10 mM) reversed the 

modification by MTSEA. This result is consistent with a previous report of the effects of SCAM on 

GABAA receptors containing the1(F64C) subunit (Boileau et al., 1999).  

Using the same approach, we applied MTSEA (10 mM) to GABAA receptors containing Cys-

substituted β1 strand residues. Exemplar currents evoked by an EC50 concentration of GABA before 

and after MTSEA application are shown in Figure 4B. MTSEA application caused a reduction in GABA-

evoked current amplitude in1(D43C)22 and 1(T47C)22 receptors. MTSEA did not affect the 

amplitude of 1(I44C)22, 1(F45C)22 or 1(V46C)22 receptors. The equivalent residues to 

Cys44 and Cys46 in the GABAA β3 homopentamer showed low SASA values and the failure of MTSEA 

to affect function is consistent with their lack of solvent accessibility (Fig. 1C).  

It is interesting that 1(F45C)22 receptors were unaffected by MTSEA despite a high SASA (Fig. 1C) 

and the importance of the identity of this residue in receptor function (Fig. 3). It is possible that 

modification by MTSEA, which would add a positive charge to the Cys residue, was functionally silent 

in these receptors. We therefore used a different sulfhydrl modifying reagent, 

phenylmethanethiosulfonate (PhMTS) which adds an aromatic group to an accessible Cys, a 

modification that would mimic the native Phe. However, PhMTS (200 µM) applied for over 2 min 

also had no effect on the function of 1(F45C)22 receptors (data not shown). In addition, we 

repeated the MTSEA experiment on 1(F45C)22 receptors using 1 mM GABA as the test 

concentration. The effect of 1 mM GABA was maximal at WT 122 receptors (Fig. 2C), whereas 

this concentration was only 80% effective at 1(F45C)22 receptors (Fig. 3A). However, MTSEA had 

no effect on the amplitude of GABA (1 mM)-evoked currents (data not shown). In addition to an 

altered GABA concentration-response relationship, 1(F45C)22 receptors displayed higher 
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spontaneous activity compared to WT 122 receptors. We therefore examined whether MTSEA 

could influence the extent of spontaneous activity mediated by 1(F45C)22 receptors. Cells were 

treated with MTSEA (2 mM) for 2 min and spontaneous activity was measured as the percentage of 

IPTX to Itotal. Figure 4C compares IPTX/Itotal in control conditions and in the presence of MTSEA (2 mM). 

There was no significant difference in the level of spontaneous activity in the presence of MTSEA. 

Taken together, these data suggest that, while Cys43 and Cys47 are accessible to MTSEA, Cys45 is 

inaccessible.  

We quantified the extent of MTSEA modification determining the percentage changes in EC50 GABA-

evoked current amplitude for each Cys substituted receptor before and after MTSEA application. 

These values are plotted in Figure 4D. Application of MTSEA caused a significant reduction in the 

amplitudes of GABA-evoked currents mediated by 1(D43C)22, 1(T47C)22 and 1(F64C)22 

receptors relative to those mediated by WT receptors (P < 0.0001; one-way ANOVA; post hoc 

Dunnet’s comparison vs 122).  

Receptor activation influences MTSEA modification of D43C and T47C containing receptors 

Receptor activation by an agonist might influence the accessibility of a substituted Cys. This could 

occur as a result of the bound agonist directly protecting the residue from modification. 

Alternatively activation may cause a conformational rearrangement of the receptor in which the Cys 

becomes less accessible. The 1(F64C) was modified more slowly by an MTS reagent applied with 

GABA to Xenopus oocytes expressing 1(F64C)22 receptors (Boileau et al., 1999). We investigated 

whether GABA also affects the modification of 1(D43C)22 and 1(T47C)22 receptors by 

applying MTSEA in its presence and absence. Once again we modified the approach for use in 

voltage-clamped HEK-293 cells (see Methods).  

First, using this approach, we compared the rate of MTSEA modification of 1(D43C)22, 

1(T47C)22 and 1(F64C)22 receptors. Figure 5A shows representative examples of the effect 

of rapid and short applications of MTSEA on GABA-evoked currents mediated by 1(D43C)22, 

1(T47C)22 and 1(F64C)22 receptors. The concentration of MTSEA used for each mutant was 

chosen empirically on the basis of a measurable reduction in the amplitude of the EC50 GABA-evoked 

current during the time course of the experiment. For 1(D43C)22 and 1(F64C)22 receptors, 

MTSEA (100 µM and 10 µM, respectively) was applied episodically for 100 ms, prior to application of 

a test concentration of GABA (EC50). For both receptors, the modification was complete within 500 

ms. The rate of MTSEA (100 µM) modification of 1(T47C)22 receptors was slower and therefore 

MTSEA was applied episodically for 500 ms prior to the application of GABA (EC50). We analysed the 



15 
 

change in EC50 GABA-evoked current amplitude and expressed these as a percentage of the control 

current. Figure 5B shows the rate of MTSEA evoked reduction of GABA-evoked currents mediated by 

1(D43C)22, 1(T47C)22 and 1(F64C)22 receptors. In all cases, the time course of MTSEA 

modification was well fitted with a single exponential. The mean (± S.E.M.) time constants of 

modification are plotted in Figure 5C. One-way ANOVA with a post hoc Tukey’s comparison of the 

time constants revealed that both 1(D43C)22 and 1(F64C)22 receptors exhibited 

modification time constants which were significantly smaller than that of 1(T47C)22 receptors (P 

< 0.0001). We also determined the second-order rate constants for MTSEA modification (see 

methods). Second-order rate constants are summarised in Table 2. The second-order rate constants 

for 1(F64C)22 receptors were significantly faster than that of 1(D43C)22 and 1(T47C)22 

receptors (P < 0.0001; one-way ANOVA; post hoc Tukey’s comparison; Table 2). Our second-order 

rate constant for MTSEA modification, derived from HEK cells expressing 1(F64C)22 receptors, is 

similar to that reported by Holden and Czajkowski (2002) in oocytes. The plateau of modification for 

1(D43C)22, 1(T47C)22 and 1(F64C)22 receptors, which indicates the maximal extent in 

functional change for the concentration of MTSEA tested, did not differ from those shown in Figure 

4D, which used a high concentration of MTSEA (2 mM). This demonstrates that modification was 

complete. Our data suggest that Cys64 and Cys43 are more accessible to modification than Cys47. 

We next repeated the experiment in the presence of either a maximal concentration of GABA, or an 

activating concentration of propofol (10 µM), applied simultaneously with MTSEA. In all cases 

(1(F64C)22, 1(D43C)22 and 1(T47C)22 receptors), the co-application of either GABA or 

propofol with MTSEA induced inward currents. Figure 6A shows the rate of MTSEA (10 µM) 

modification of 1(F64C)22 receptors in the presence of either GABA (300 mM) or propofol (10 

µM). The rate of modification was again measured by episodic (100 ms) application of MTSEA (10 

µM) with GABA (300 mM) or propofol (10 µM) for the first 500 ms. Propofol did not affect the rate 

of MTSEA modification (Fig. 6A inset). In the presence of GABA (300 mM) however, the extent of 

modification following 500 ms of MTSEA exposure was less than in its absence (Fig. 6A inset). We 

therefore increased the duration of each episodic application to 2 s. The rate of modification in the 

presence of GABA was best fitted with a double exponential (Fig. 6A). The weighted τ was calculated 

for modification when MTSEA was applied simultaneously with GABA and compared with the τ for 

modification in the absence of GABA. The mean (± S.E.M.) time constants are plotted in Figure 6B. 

The second-order rate constants derived from the exponential fits are summarised in Table 2. GABA 

(300 mM), but not propofol (10 µM), significantly slowed the rate of MTSEA (10 µM) modification at 

1(F64C)22 receptors (P = 0.0004; one-way ANOVA; post hoc Tukey’s comparison). Our data are 
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consistent with previous observations indicating that GABA, but not the allosteric agonist 

pentobarbital, influences modification of α1(F64C) containing GABAA receptors (Boileau et al., 1999). 

Using the same approach, we determined the effect of GABA and propofol on MTSEA (100 µM) 

modification of 1(D43C)22 and 1(T47C)22 receptors. The concentrations of GABA used were 

300 mM and 30 mM, respectively and 10 µM propofol was used for both receptors. The time course 

for MTSEA modification in control, in the presence of GABA and in the presence of propofol for 

1(D43C)22 receptors is shown in Figure 6D. MTSEA in the presence or absence of agonists was 

applied cumulatively for 100 ms. The rates of modification in all three conditions were well fitted 

with single exponential functions (Fig. 6D). The mean (± S.E.M.) time constants and extent of 

functional change are plotted in Figure 6E and F, respectively. Second-order rate constants are 

summarised in Table 2. In the presence of GABA (300 mM), there was a significant increase in the τ 

of MTSEA modification (P < 0.05; one-way ANOVA; post hoc Tukey’s comparison vs control). There 

was a tendency for the τ of modification to increase in the presence of propofol, but this was not 

statistically significant. However, there was also no significant difference in the τ of modification in 

the presence of GABA and in the presence of propofol. Furthermore, comparison of the extent of 

functional change revealed a statistically significant reduction between that in the presence of GABA 

and control (P < 0.05; one-way ANOVA; post hoc Tukey’s comparison vs control), and that in the 

presence of propofol and control (P < 0.05; one-way ANOVA; post hoc Tukey’s comparison vs control; 

Fig. 6F). These data therefore suggest that both GABA and propofol influence MTSEA modification of 

Cys43. This is in contrast to Cys64 in loop D where the allosteric agonist propofol did not influence 

MTSEA modification (Fig. 6A-C). 

Figure 6G shows the time course of MTSEA (100 µM) modification of 1(T47C)22 receptors in 

control, in the presence of GABA (30 mM) and in the presence of propofol (10 µM). MTSEA in the 

presence or absence of agonists was applied cumulatively for 500 ms. The time course for 

modification in each case was well fitted with a single exponential function. The mean (± S.E.M) τ of 

modification and the extent of functional change are plotted in Figure 6H and I respectively. Second-

order rate constants are summarised in Table 2. GABA (30 mM) and propofol (10 µM) did not 

significantly alter the τ of MTSEA modification at 1(T47C)22 receptors. However, both GABA and 

propofol significantly reduced the extent of MTSEA mediated inhibition (P < 0.05; one-way ANOVA; 

post hoc Tukey’s comparison vs control; Fig. 6I).   
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Discussion 

In this study, we investigated the role of the α1 subunit β1 strand in GABAA receptor function. 

Guided by MD simulation data on the SASA of equivalent residues of the GABAA β3 homopentamer, 

we mutated five continuous residues on the β1 strand of the GABAA α1 subunit to Cys. Whole-cell 

voltage clamp electrophysiology revealed that D43C, F45C and T47C substitutions caused changes in 

the GABA concentration-response relationship, demonstrating for the first time that the β1 strand 

residues play a role in mammalian pLGIC function.  

The β1 strand runs adjacent and parallel to the critical β2 strand, which contains loop D. A crucial 

Phe (Phe64) in the β2 strand of the GABAA receptor α1 subunit plays a critical role in both GABA 

binding and the conformational transition which leads to orthosteric gating of the channel (Boileau 

et al., 1999; Szczot et al., 2014). These effects also manifest as a large rightward shift in the apparent 

potency for GABA. The agonist concentration-response relationship (and therefore apparent 

potencies) are composites of binding and gating events, and therefore both can influence the 

concentration-response relationship (Colquhoun, 1998). Indeed, 1 subunit Phe64 in the 2 strand, 

which causes large rightward shifts in the apparent potency of GABA, when Cys substituted, is an 

example of a residue with a dual action in binding and gating efficacy (Boileau et al., 1999; Szczot et 

al., 2014). Substituted Cys64 in the GABAA receptor 1 subunit was accessible to sulfydryl 

modification when expressed in Xenopus oocytes (Boileau et al., 1999; Holden & Czajkowski, 2002). 

Using fast applications of MTSEA, we showed that the same substitution in α1β2γ2 receptors 

expressed in HEK-293 cells was modified with a similar second-order rate constant. Furthermore, as 

previously reported, the presence of GABA slows the rate of Cys64 modification while the allosteric 

agonist propofol had no effect. This is in contrast to α1(D43C)β2γ2 and α1(T47C)β2γ2 receptors, 

where both GABA and propofol affect MTSEA mediated modification of the substituted Cys, 

suggesting that β1 strand residues play a different role to that of Phe64 in the β2 strand in terms of 

GABAA receptor activation. 

Changes in Cys accessibility during receptor activation can be due to either direct or indirect effects 

of agonists. Direct agonist effects likely arise from hindrance of the substituted Cys by the bound 

agonist (protection), while indirect effects likely arise from conformational changes induced by the 

agonist which alter the position of the substituted Cys, making it less accessible. Our data show that 

an activating concentration of propofol impairs the accessibility of both Cys43 and Cys47 in a similar 

manner to a maximally effective concentration of GABA. This is consistent with a conformational 

change associated with gating resulting in reduced accessibility of positions 43 and 47. This also 

suggests that the structural rearrangements in the β1 strand of the GABAA receptor α1 subunit is 
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similar, irrespective of agonist binding in the vicinity, or far away from the orthosteric binding site. A 

conformational change in this region makes sense given the anti-parallel location of the β1 relative 

to the β2 strand, together constituting a hairpin structure that participates in the transduction of 

binding to GABAA channel opening. Indeed, Kash et al (2003) implicated an interaction between the 

loop connecting the 1 and 2 strands of the α1 subunit, and the TM2-3 loop during GABAA receptor 

activation. Furthermore, we have previously demonstrated that substitution of the conserved 1 

subunit TM2-3 Lys278 with methionine reduces the efficacy of activation by GABA and propofol 

(Hales et al., 2006). The same mutation also reduced the level of spontaneous gating of 

α1(K278M)β22 GABAA receptors consistent with a global reduction in gating (Othman et al., 2012). 

Comparison of the open (ivermectin and glutamate bound) and closed (apo) structures of GluCl also 

reveals movement in this region associated with channel opening (Althoff et al., 2014). During 

activation there is a downward displacement of the β1-β2 loop, increasing its proximity to the TM2-3 

loop. The agonist bound and apo-GluCl models also reveal large movements of residues within the 

β1 and β2 strands, particularly Arg37 in the β1 strand, homologous to Thr47 in this study. 

Comparison of the open (glycine bound) and closed (strychnine bound) structures of the zebrafish 

glycine receptor reveal similar movements of the β1-β2 loop (Du et al., 2015). It is therefore 

becoming evident that residues along the β1 and β2 strands are well positioned to participate in the 

transduction of agonist binding to gating.  

While α1(D43C)β2γ2 and α1(T47C)β2γ2 receptors were sensitive to MTSEA modification, 

α1(I42C)β2γ2, α1(F45C)β2γ2 and α1(V46C)β2γ2 receptors were not. The low SASA values of the 

homologous residues to those in position 42 and 46 of the GABAA β3 homopentamer (Ile42 and Ile44 

respectively; Fig. 1) suggest that these residues are not solvent exposed, but instead have their side 

chains orientated within a hydrophobic environment. However, the homologous position to Cys45 in 

the GABAA β3 homopentamer (Asp43) is solvent accessible; this contrasts with our SCAM data which 

demonstrate that Cys45 is not modifiable by MTSEA or PhMTS. We propose that the carboxylate 

group of Asp43 (equivalent to Phe45 in α1) causes an increased hydration of the agonist binding site 

in the case of the β3 homopentamer, as it has previously been shown that negatively charged side 

chains can promote solvation even in highly hydrophobic regions (Krah et al., 2010; Villinger et al., 

2010). The structure of the α1 subunit within the heteromeric α1β2γ2 receptor may also differ 

significantly from the β3 subunit altering the environment of α1 residue 45 relative to the equivalent 

β3 residue 43. The most obvious structural difference between these two subunits in the vicinity of 

this residue is in loop F, which together with loop D sandwich the β1 strand. Loop F has two fewer 

residues in the α1 subunit compared to the β3 subunit. 
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Our data also demonstrate that α1(F45C)β2γ2 receptors have a biphasic GABA concentration-

response relationship with increased spontaneous gating. The component of the biphasic GABA 

concentration-response relationship, with the higher apparent potency, may occur as a consequence 

of increased spontaneous gating observed for α1(F45C)β2γ2 relative to WT receptors. Our finding 

that α1(F45C)β2γ2 exhibits increased spontaneous gating suggests that residue Phe45 stabilises the 

receptor in the inactive conformation.  

Mutations that increase spontaneous gating typically cause a left-shifted concentration-response 

relationship, where receptors have a higher sensitivity to agonists (Mortensen et al., 2003; Hadley & 

Amin, 2007). The component of the α1(F45C)β2γ2 concentration-response relationship, with a lower 

apparent potency, has a shallow Hill coefficient (~0.5; Fig. 3A; Table 1), suggesting that cooperativity 

between adjacent GABA binding sites is impaired. It is worth considering how residue 45 in the first 

occupied orthosteric site may participate in communication with the subsequently occupied binding 

site. As mentioned previously, the β1 strand lies between loop D on the β2 strand and loop F. Loop F 

in GABAA 1 homopentamers and α1β2γ2 heteromers has been implicated in cooperativity of 

binding and gating, respectively. Site-directed fluorescence spectroscopy of GABAA 1 receptors, 

implicated structural rearrangements in loop F during orthosteric ligand binding, which were 

unrelated to gating (Khatri et al., 2009). Interestingly, for GABAA 1 receptors, a number of loop F 

Cys substitutions appeared to reduce the Hill coefficient. Loop F residues in the γ2 subunit are also 

implicated in transducing benzodiazepine binding events to altered gating (Hanson & Czajkowski, 

2008) and it has been postulated that loop F residues play a role in cooperatively of agonist binding 

(Khatri & Weiss, 2010). Therefore, Phe45 in the β1 strand of the GABAA α1 subunit may transduce 

structural rearrangements within the binding pocket to the adjacent binding domain, via loop F. 

Therefore, the lack of Phe45 in the α1(F45C)β2γ2 receptor may lead to an uncoupling of binding 

between the two orthosteric binding sites. In addition, the existence of receptors in either the 

spontaneously open conformation or in the closed state may provide an explanation for high and 

low sensitivity components of the concentration response relationship.  

Residues in the β1 and β2 strands of the Erwinia chrysanthemi ligand gated ion channel (ELIC) (Pan 

et al., 2012) and neuronal α7 acetylcholine receptors (Quiram et al., 2000) have been implicated in 

the recognition of antagonists. The C. elegans GluCl α subunit homopentamer is the only structure 

which implicates 1 strand residues in agonist binding, and consequently this region was postulated 

to be a seventh ligand binding loop, termed loop G (Hibbs & Gouaux, 2011). Arg45 in the C. elegans 

GluCl α subunit appears to participate in glutamate binding. By contrast, β1 strand residues of the 

GABAA β3 (Miller & Aricescu, 2014), and the 5-HT3A receptors (Hassaine et al., 2014), lie outside the 
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ligand binding site. Emerging structural data suggest that a direct role for β1 strand residues in 

agonist binding may be restricted to the C. elegans GluCl (Blarre et al., 2014). 

Our findings suggest that naturally occurring mutations and polymorphisms that affect the β1 strand 

may result in functional deficits that could be pathological. We are unaware of any such mutations 

that have been identified to date, but knowledge of the importance of this region of the receptor 

may prove to be important in future studies.  

Refinement of the SCAM for use with rapid solution exchange should enable an investigation of 

altered accessibility caused by specific states of the receptor induced by agonist activation. We 

anticipate that this approach will help bridge the gap between static structural models and real time 

recordings of electrophysiology. This will help to discriminate between conformational changes 

caused by activation and desensitisation.      
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Figure legends 

Figure 1. Amino acids implicated in agonist binding to GABAA and GluCl receptors in β1 and β2 

strands, respectively. A, Amino acid sequence alignment of the mouse GABAA α1 and β3 subunits, 

and C. elegans GluCl α subunit. The region shown in the sequence alignment contains the residues 

relevant to this study. Residues in the GABAA β3 subunit evaluated using MD simulation are in black. 

The residues in the β1 strand of the α1 subunit mutated to Cys are in bold and underlined. B, 

Graphical representation of the solvent accessible area of the GABAA 3 homopentamer from a 

representative snapshot. The β1 strand is shown in blue in all five subunits, residues of particular 

interest in one subunit are displayed as van der Waals spheres, and water molecules within a 

distance of 4.5 Å of these residues are shown as sticks. The solvent accessible crevice near the β1 

strand is displayed in orange (transparent). C, Solvent accessible surface area (SASA) of β1 strand 

residues and Tyr62 (equivalent to α1 subunit Phe64) in the GABAA 3 homopentamer. The SASA of 

the homologous residues we chose for functional analysis are (as mean ± S.D.) 1.34 ± 0.2 nm2 for 

Asn41, 0.05 ± 0.04 nm2 for Ile42, 1.85 ± 0.26 nm2 for Asp43, 0.07 ± 0.06 nm2 for Ile44 and 1.07 ± 0.18 

nm2 for Ala45 in the β1 strand. Tyr62 in loop D of the β2 strand had a SASA of 1.93 ± 0.2 nm2.  

Figure 2. β1 strand residues influence the apparent potency of GABA. A, Representative examples of 

whole-cell currents evoked by different concentrations of GABA (indicated) mediated by WT or Cys-

substituted α1β2γ2 receptors. The bar indicates GABA application. B, Concentration-response 

relationships for WT or Cys-substituted α1β2γ2 GABAA receptors. Current amplitudes were 

expressed as a percentage of the maximum current amplitude recorded from each cell. Each point 

represents the mean (± S.E.M.) of at least 4 recordings. The sigmoidal curve represents the logistic 

function fitted to the data points. Mean parameters and statistical comparisons from the logistic 

function are summarised in Table 1. 

Figure 3. α1(F45C)β2γ2 GABAA receptors display a biphasic GABA concentration-response 

relationship and are more spontaneously active. A, Concentration-response relationship for 

α1(F45C)β2γ2 GABAA receptors. Current amplitudes were expressed as a percentage of maximum. 

Each point represents the mean ± S.E.M. of at least 4 recordings. The solid black line shows the two 

component logistic function fit to the data points. The two solid grey lines show the separate 

components of the logistic function fit. The fit parameters are summarised in Table 1. The logistic 

function fit for WT α1β2γ2 receptors is also reproduced here for comparison (grey dotted line). Inset 

shows representative example of whole-cell currents evoked by different concentrations of GABA 

(indicated) mediated by α1(F45C)β2γ2 GABAA receptors. The bar indicates GABA application. B, 

Representative examples of whole-cell currents evoked by a maximally efficacious concentration of 
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GABA (grey traces) or inhibition of standing current by PTX (black trace) at α1β2γ2 or α1(F45C)β2γ2 

receptors. The black bar indicates GABA or PTX application. The inset shows on an expanded scale, 

PTX inhibition of standing current. C, Bar graph shows mean (± S.E.M.) PTX inhibited standing current 

(IPTX) expressed as a percentage of the total current (Itotal) for α1β2γ2 (n = 5) and α1(F45C)β2γ2 (n = 

10) GABAA receptors. The difference in mean PTX component was significantly higher at 

α1(F45C)β2γ2 receptors (*P = 0.014; t-test). 

Figure 4. Accessibility of Cys substituted β1 strand residues to sulfhydryl modification. A, 

Representative examples of the effect of MTSEA on WT α1β2γ2 and α1(F64C)β2γ2 receptors. MTSEA 

(10 mM) was applied to a cell expressing WT α1β2γ2 receptors prior to recording a current evoked 

by the EC50 concentration (10 µM, black bar) of GABA. Also shown is the effect of MTSEA (2 mM) on 

α1(F64C)β2γ2 receptors. MTSEA substantially reduced the amplitude of the EC50 (10 mM) GABA-

evoked (black bar) current through α1(F64C)β2γ2 receptors. Modification was reversed following 

application of DTT (10 mM). B, Representative examples of MTSEA (2 mM) on β1 strand Cys-

substituted α1β2γ2 receptors. MTSEA (arrow) reduced the current amplitude of α1(D43C)β2γ2 and 

α1(T47C)β2γ2 receptors. C, Effect of MTSEA (2 mM) on spontaneous activity of α1(F45C)β2γ2 

receptors. Spontaneous activity was quantified as IPTX/Itotal. The level of spontaneous activity in 

control conditions was 0.51 ± 0.11% (n = 10). In the presence of MTSEA (2 mM), it was 0.38 ± 0.17% 

(n = 5). The difference was not statistically significant. (P > 0.05; t-test). D, Bar graph shows mean (± 

S.E.M.) percentage change in current amplitude following MTSEA treatment in WT and mutant 

α1β2γ2 receptors. The change in GABA-evoked current amplitude was 11 ± 5.1% (n = 6) for WT 

α1β2γ2, -46 ± 2.1% (n = 8) for α1(D43C)β2γ2, 21 ± 7.5% (n = 3) for α1(I44C)β2γ2, 5.4 ± 6.9% (n = 4) 

for α1(F45C)β2γ2, -1.1 ± 8.1% (n = 3) for α1(V46C)β2γ2, -49 ± 5.0% (n = 15) for α1(T47C)β2γ2 and -88 

± 2.4% (n = 4) for α1(F64C)β2γ2 receptors. There was a statistically significant difference in the 

percentage change between α1(D43C)β2γ2, α1(T47C)β2γ2 and α1(F64C)β2γ2 receptors when 

compared to WT α1β2γ2, receptors (*P < 0.0001; one-way ANOVA; post-hoc Dunnet’s comparison vs 

WT). 

Figure 5. Rate of MTSEA modification of Cys64, Cys43 and Cys47. A, Representative examples of EC50 

GABA-evoked currents before and after cumulative MTSEA application at α1(F64C)β2γ2, 

α1(D43C)β2γ2 and α1(T47C)β2γ2 receptors. The first current in each trace indicates the steady state 

EC50 GABA-evoked current amplitude in control conditions. MTSEA was applied for the indicated 

time (arrow) and a second EC50 GABA-evoked current was recorded. Cumulative application of 

MTSEA led to a progressive reduction in EC50 GABA-evoked current amplitudes. B, Rate of MTSEA 

modification of α1(F64C)β2γ2 (n = 4), α1(D43C)β2γ2 (n = 6) and α1(T47C)β2γ2 (n = 8) receptors. The 

line shows the exponential function fitted to the data points. C, Bar graph shows mean (± S.E.M.) τ of 



28 
 

MTSEA modification of α1(F64C)β2γ2 (0.065 ± 0.020 s; n = 4), α1(D43C)β2γ2 (0.16 ± 0.020 s; n = 6) 

and α1(T47C)β2γ2 (1.8 ± 0.19 s; n = 8) receptors. The τ of MTSEA modification was significantly 

larger for α1(T47C)β2γ2 receptors compared with α1(D43C)β2γ2 and α1(F64C)β2γ2 receptors (* and 

# P < 0.0001; one-way ANOVA; post hoc Tukey’s comparison).  

Figure 6. Effect of GABA and propofol on MTSEA modification of Cys substituted receptors. A, Rate 

of MTSEA (10 µM) modification of α1(F64C)β2γ2 receptors in control (solid circles), in the presence 

of GABA (300 mM; open squares) or propofol (10 µM; open triangles). The line shows the 

exponential function fitted to the data points. Inset in A shows, on an expanded time scale, the 

difference in rate of MTSEA modification in the presence or absence of agonists. B, The bar graph 

shows mean (± S.E.M.) τ MTSEA modification of α1(F64C)β2γ2 receptors. The τ of MTSEA 

modification in control, GABA and propofol was 0.065 ± 0.02 s (n = 4), 5.5 ± 1.3 s (n = 4) and 0.057 ± 

0.001 s (n = 5). The presence of GABA significantly increased the τ of MTSEA modification (*P < 0.001; 

one-way ANOVA; post hoc Tukey’s comparison). C, The bar graph shows mean (± S.E.M.) extent of 

MTSEA modification of α1(F64C)β2γ2 receptors. The extent of MTSEA modification in control, GABA 

and propofol was 12 ± 2.4% (n = 4), 43 ± 3.8% (n = 4) and 12 ± 4.4 s (n = 5). The presence of GABA 

significantly reduced the extent of MTSEA modification (*P < 0.0001; one-way ANOVA; post hoc 

Tukey’s comparison). D, Same as A, the rate of MTSEA (100 µM) modification of α1(D43C)β2γ2 

receptors. E, Mean (± S.E.M.) τ MTSEA modification of α1(D43C)β2γ2 receptors. The τ of MTSEA 

modification in control, GABA (300 mM) and propofol (10 µM) was 0.16 ± 0.02 s (n = 6), 0.41 ± 0.10 s 

(n = 6) and 0.32 ± 0.054 s (n = 7). The presence of GABA significantly increased the τ of MTSEA 

modification (*P < 0.05; one-way ANOVA; post hoc Tukey’s comparison). F, Mean (± S.E.M.) extent of 

MTSEA modification of α1(D43C)β2γ2 receptors. The extent of MTSEA modification in control, GABA 

and propofol was 60 ± 2.2% (n = 6), 71 ± 3.4% (n = 6) and 70 ± 3.2% (n = 7). The presence of GABA 

and propofol significantly reduced the extent of MTSEA modification (*P < 0.05; one-way ANOVA; 

post hoc Tukey’s comparison). G, Same as A, the rate of MTSEA (100 µM) modification of 

α1(T47C)β2γ2 receptors. H, Mean (± S.E.M.) τ MTSEA modification of α1(T47C)β2γ2 receptors. The τ 

of MTSEA modification in control, GABA (30 mM) and propofol (10 µM) was 1.8 ± 0.19 s (n = 8), 3.1 ± 

0.59 s (n = 5) and 2.2 ± 0.54 s (n = 6). There was no significant difference in the τ of modification (P = 

0.13; one-way ANOVA). I, Mean (± S.E.M.) extent of MTSEA modification of α1(T47C)β2γ2 receptors. 

The extent of MTSEA modification in control, GABA and propofol was 47 ± 5.5% (n = 8), 69 ± 4.4% (n 

= 5) and 67 ± 6.1% (n = 6). The presence of GABA and propofol significantly reduced the extent of 

MTSEA modification (*P < 0.05; one-way ANOVA; post hoc Tukey’s comparison).  
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Table 1. Summary of logistic function fit parameters and current density values. 

 

 GABA EC50 (µM) Hill slope Current density (pA pF
-1

) 

α1β2γ2 17.8 ± 5.1 (6) 1.12 ± 0.17 (6) 1400 ± 250 (20) 

α1(D43C)β2γ2 857 ± 161 (5)* 1.01 ± 0.059 (5) 210 ± 69 (8)* 

α1(I44C)β2γ2 38.4 ± 11.7 (5) 1.68 ± 0.15 (5) 1200 ± 330 (7) 

α1(F45C)β2γ2 
HP 0.52 (16) 

LP 150 (16) 

HP 1.91 (16) 

LP 0.51 (16) 
880 ± 130 (27) 

α1(V46C)β2γ2 19.0 ± 4.1 (4) 1.48 ± 0.13 (4) 890 ± 230 (7) 

α1(T47C)β2γ2 135 ± 13.7 (9) 1.42 ± 0.20 (9) 610 ± 110 (12)* 

α1(F64C)β2γ2 19000 ± 1600 (3)† 1.00 ± 0.29 (3) 77.9 ± 33.3 (13)† 

Data are provided as mean ± S.E.M. of (n) number of experiments, except EC50 and Hill slope values of α1(F45C)β2γ2 receptors, where the average fit parameters of the high apparent 

potency (HP) and low apparent potency (LP) components are reported. * Denotes significant difference (P < 0.05) from one-way ANOVA with Dunnet’s post hoc comparison with α1β2γ2 

values. α1(F45C)β2γ2 receptors were not statistically compared for EC50 and Hill slope values because of the presence of two components in the GABA concentration-response relationship. † 

Denotes significant difference (P < 0.05) between α1(F64C)β2γ2 receptors and α1β2γ2 receptors from t-test. 

  



30 
 

Table 2. Summary of second-order rate constants for MTSEA modification. 

 

 MTSEA k2 (M
-1

 s
-1

) MTSEA + GABA k2 (M
-1

 s
-1

) MTSEA + propofol k2 (M
-1

 s
-1

) 

α1(D43C)β2γ2 70,030 ± 9,629 (6) 34,530 ± 10,420 (6)* 38,860 ± 8,437 (7) 

α1(T47C)β2γ2 6,216 ± 784.8 (8) 3,892 ± 873.6 (5) 6,049 ± 1,271 (6) 

α1(F64C)β2γ2 1,944,000 ± 460,500 (4)† 24,660 ± 9,129 (4)* 1,832,000 ± 205,400 (5) 

Data are provided as mean ± S.E.M. of (n) number of experiments. The second-order rate constants are calculated by dividing the rate of decay obtained from the exponential fits to data 

which generated the rate of MTSEA modification data, by the concentration of MTSEA used. The concentration of MTSEA used was 100 µM for α1(D43C)β2γ2 and α1(T47C)β2γ2 receptors, 

and 10 µM for α1(F64C)β2γ2 receptors. * Denotes significant difference (P < 0.05) from one-way ANOVA with post hoc Tukey’s comparison between the presence or absence of saturating 

concentrations of GABA, or activating concentrations of propofol. † Denotes significant difference (P < 0.05) from one-way ANOVA with post hoc Tukey’s comparison between MTSEA k2 of 

different mutants.  


