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Abstract

Protein–ligand binding prediction typically relies on docking methodologies and asso-

ciated scoring functions to propose the binding mode of a ligand in a biological target.

Significant challenges are associated with this approach, including the flexibility of

the protein–ligand system, solvent-mediated interactions, and associated entropy

changes. In addition, scoring functions are only weakly accurate due to the short time

required for calculating enthalpic and entropic binding interactions. The workflow

described here attempts to address these limitations by combining supervised molec-

ular dynamics with dynamical averaging quantum mechanics fragment molecular

orbital. This combination significantly increased the ability to predict the experimen-

tal binding structure of protein–ligand complexes independent from the starting posi-

tion of the ligands or the binding site conformation. We found that the predictive

power could be enhanced by combining the residence time and interaction energies

as descriptors in a novel scoring function named the P-score. This is illustrated using

six different protein–ligand targets as case studies.

K E YWORD S

binding pose prediction, dynamic average quantum mechanics fragment molecular orbital,
P-score, supervised molecular dynamics

1 | INTRODUCTION

In the absence of any crystallographic data, the accurate prediction of

a ligand's binding mode can be critical for success in structure-based

drug discovery.1 Likewise, structure based virtual screening methods,

which are widely used for the identification of chemical starting

points, rely heavily on accurate pose prediction and scoring.2–5

There is widespread application of protein–ligand docking algo-

rithms in molecular design, yet they possess significant drawbacks. To

enable docking at speed a variety of approximations are made

to derive a scoring function which albeit renders the scores almost

qualitative. The scoring system rarely accounts for the conformational

flexibility of either the protein or the ligand associated with induced-

fit or conformational-selection binding events. Consequently, water

and or ion solvation together with the entopic changes associated on

ligand binding are poorly handled. Hence, small changes in the binding

site conformation or entropic solvation can lead to drastically differ-

ent docking results.6–12

To address these limitations, molecular mechanics with Poisson-

Boltzmann and surface area (MM-PBSA) or molecular mechanics with

generalized Born and surface area (MM-GBSA) approaches were

introduced to estimate the binding energies, combining molecular

mechanics with estimates of solvation energies. These methods were

introduced in the late 1990s by the Kollman and Case labs, aiming to
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estimate the binding free energies, or relative binding free energies, of

related compounds and protein–ligand binding modes.13,14

Despite their potential, MM-PBSA/GBSA have several limitations

which include the need for prior knowledge of a protein–ligand bound

complex to serve as a starting point, although starting conformations

can be taken from prior docked poses. Their accuracy for binding

poses prediction and ranking the order of compounds according to

their affinities is very system dependent.15,16

Recent developments in machine and deep learning approaches

have led to a possible paradigm shift in the way protein ligand docking

solutions are generated. Programs such as LiGANN, DiffDock, or

Pocket2Mol generate both molecule and pose simultaneously.17–19

However, tools such as PoseBusters or PoseCheck which were devel-

oped to assess the geometric and interaction quality of generated

ligands have highlighted there is significant room for improvement

compared to solutions derived from physics-based approaches.20,21

To overcome the issues outlined above, we introduce a novel pro-

tocol (Figure 1), which combines supervised molecular dynamics

(SuMD) with dynamical averaging of quantum mechanics fragment

molecular orbital (DA-QM-FMO). SuMD allows a dynamical sampling

of a protein–ligand system in a fully solvated environment with pro-

tein flexibility and ligand conformational sampling. DA-QM-FMO esti-

mates the average potential binding interaction energies from

dynamically generated protein–ligands binding modes. In this study,

DA-QM-FMO was able to outperform simple docking or MM-PBSA/

GBSA at predicting the experimental binding pose.

We believe limitations due to the length of the SuMD simulations

and the approximations made in energy calculations techniques,

accounts for the fact that these calculations on their own did not fully

replicate the experimental data. However, by combining the residence

time and binding interaction energy the method was able to improve

the predictive power. We refer to the combination of descriptors as

the P-score (Figure 1;4). The P-score prioritizes protein–ligand binding

poses based on stability and interaction energy of binding modes. We

apply the P-score theory using six different case studies, with

published crystal structures from the Protein Data Bank (PDB);

Papain-like protease protein (PL-pro) and Main-protease (Mpro) for

SARS-CoV-2, Heat shock protein 90 (Hsp90), p38 Kinase (p38),

Myeloid Cell Leukemia 1 (Mcl-1), and Pseudomonas. aeruginosa

LpxC (LpxC).

2 | MATERIALS AND METHODS

2.1 | Protein–ligand sampling phase

SuMD was used to allow a whole ensemble sampling phase between

the ligand and its intended target independent form the initial ligand

position either in solvent or within the binding site vicinity. SuMD is a

novel molecular dynamics approach developed by Moro et al.22,23 that

enables the investigation of the molecular recognition pathway

between ligand and receptor. SuMD overcomes the conventional con-

straints associated with the docking methods in protein–ligand bind-

ing pose generation.24,25

2.1.1 | System preparation

Protein structures for five systems; Pl-pro, Mpro, p38, Hsp90, and

Mcl-1, were prepared with the protein preparation wizard as imple-

mented in Maestro.26 Hydrogen atoms were added to the complex

and missing atoms in protein side chains were built according to the

AMBER16 force field topology.27 The N- and C-terminus were

capped. LpxC system was built using Metal Center Parameter Builder

(MCPB) from Ambertools for the Zn+2 binding site using Zinc AMBER

force field (ZAFF) for 4-coordinated zinc metal centers.28

2.1.2 | Ligand parameterization

All ligands were prepared and treated under physiological conditions

of pH = 7.4, throughout the present study. For the MD simulations,

the AMBER16 force field was used. Geometry minimization, and

ligand parameters were derived with GAFF, as implemented in

F IGURE 1 Schematic diagram of the binding pose prediction and scoring, the P-score (SuMD X DA-QM-FMO ! P-score). ΔE, interaction
energy; COM. centre of mass; t, residence time.
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Ambertools, by using Antechamber and PARMCHK tools. Partial

charges were calculated following the procedure suggested by

antechamber.29,30

2.1.3 | Solvated system setup and equilibration

Protein–ligand complexes were assembled with the tleap tool using

AMBER16SB, as the force field for the proteins.31 The systems were

explicitly solvated by a cubic water box with cell borders placed at

least 13 Å away from any protein or ligand atom using TIP3P as the

water model.32 To neutralize the total charge, Na+/Cl� counterions

were added to a final salt concentration of 0.15 M. The systems were

energy minimized for 1000 steps with the conjugate-gradient method

and then 50,000 steps of NVE (100 ps) ensemble (micro-canonical

ensemble; constant number of particles [N], constant volume [V], con-

stant energy [E]) followed by 1 ns of NPT (isothermal–isobaric ensem-

ble; constant number of particles [N], constant pressure [P], constant

temperature [T]) simulation, both using a time step of 2 fs and apply-

ing harmonic position constraints on protein and ligand atoms, which

were gradually reduced with a scaling factor of 0.1. Pressure was

maintained at 1 atm using a Berendsen barostat. The Langevin ther-

mostat was set with a low damping constant of 1 ps–1. Bond lengths

involving hydrogen atoms were constrained using the M-SHAKE algo-

rithm. The MD production runs were conducted in a NVT ensemble.

Long-range Coulomb interactions were treated using the particle

mesh Ewald summation method (PME) setting the mesh spacing to

1.0 Å. A nonbonded cutoff distance of 9 Å with a switching distance

of 7.5 Å was used.33–36

2.2 | Protein–ligand binding poses clustering using
DBSCAN

After concatenating SuMD trajectories, they were subjected to geo-

metric distinction using DBSCAN. This process helped in identifying

clusters of similar conformations in the combined trajectory data.

DBSCAN is a density-based clustering algorithm that allows the most

populated ligand-protein states to be identified and distinguished

from the background noise.37 Each cluster (protein–ligand binding

mode) is composed of a collection of MD snapshots “MD frame.”
Binding poses are then evaluated using the energy calculation

approaches (MM-PBSA, QM-FMO, and DA-QM-FMO) to estimate

the protein–ligand complex binding energy and interaction energy.

2.3 | Energy calculation

To evaluate the binding energies from the sampling and clustering

phases, we make a comparison between MM-PBSA, Quantum

Mechanics fragment molecular orbital (QM-FMO) method and

Dynamical averaging of QM-FMO (DA-QM-FMO). For the MM-

PBSA, molecular mechanics energies were calculated along with

generalized Born and surface area continuum solvation using the

MMPBSA.py scripts from the AmberTools22 suite (https://ambermd.

org/).38 QM-FMO is used for calculating the binding interaction ener-

gies described by the inter-fragment interaction energy (IFIE) and its

pair interaction energy decomposition analysis (PIEDA).39,40

Inter-fragment interaction energy (IFIE) analysis estimates

protein–ligand interactions with quantum (electronic) effects using a

modest level of computational resources. Furthermore, by means of

pair interaction energy decomposition analysis (PIEDA), the FMO

interaction energy, ΔEFMO, is calculated as the sum of five energy

terms: electrostatic (ΔEES), exchange repulsion (ΔEEX), dispersion

(ΔEDI), charge transfer with higher-order mixed terms (ΔECT+mix), and

solvation energy, as shown in Equation (1). This approach offers a

detailed estimation of protein–ligand interactions in an implicit water,

polarizable continuum model (PCM) that has been of great value in a

range of drug discovery projects.

ΔEFMO ¼ΔEesij þΔEexij þΔEctþmix
ij þΔEDI

ij þΔEGsol, ð1Þ

ΔEFMO; interaction energy of a single snapshot (MD frame).

Dynamical averaging of QM-FMO allows an estimation of the

total average interaction energy (ΔEFMO) of the protein–ligand com-

plex along the MD trajectory instead of relying only on the interaction

energy ΔEFMO for a single snapshot (cluster representative).41

The total average interaction energy (ΔEFMO) (DA-QM-FMO) of a

binding mode is obtained by calculating the average interaction

energy ΔEFMO of all snapshots found per cluster divided by the num-

ber of snapshots within the cluster (MD frames) as shown in

Equation (2).41

ΔEFMO
� �

¼
XΔE FMO

i

N
, ð2Þ

(ΔEFMO) DA-QM-FMO represents the average ΔEFMO per cluster;

i and N denote the indices of the MD snapshots and the total number

of MD snapshots per cluster, respectively.

Prior to the DA-QM-FMO calculations, all snapshots were treated

with a restrained minimization procedure with the OPLS3e force field

to alleviate steric clashes, following the protein preparation wizard

protocol of Schrödinger's software suite.42 The heavy atoms of the

protein were permitted to move up to 0.3 Å from their original posi-

tion in the crystal structure, while the heavy atoms of the ligand and

water molecules were restrained in position with a force of 1.0 kcal/

mol/Å; hydrogen atoms were left unrestrained. The restraint weight

was set to ensure that the binding poses of the ligands did not deviate

far from their initial positions.

Protein residues within a radius of 5 Å from the ligand atoms

were included in the FMO calculations. The C-terminal carboxylic acid

of the peptide was capped with N-methylamine, and the N-terminal

position acetylated while maintaining the geometry of the neighboring

residues. A given amino acid, along with its side chain, C-alpha, and

backbone NH, and the carbonyl group of the adjacent amino acid,

define each FMO fragment. Fragmentation was carried out according

1764 IBRAHIM ET AL.
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to a well-established fragmentation strategy inspired from Facio,43 in

a fully automated high-throughput python code. The calculations

were performed at second order Møller–Plesset perturbation theory

(FMO2-MP2/6-31G*) and density function tight-binding (FMO2-DFTB)

theory level, using GAMESS implementation.44,45

All calculations were performed on a hybrid CPU/GPU cluster.

SuMD simulations were carried out with the ACEMD engine, on a

GPU cluster equipped with 16 GPUs (2 NVIDIA GTX 1080 per node

on 8 GPUs).46

2.4 | P-score theory for protein–ligand binding
pose scoring

To improve the predictive power for ranking binding poses (cluster

representatives), we introduce the P-score as a novel scoring function

to eliminate false positives in binding pose ranking. The rationale

behind the P-score for protein–ligand binding prediction is that a

ligand binding mode of interest is likely to show a lengthened resi-

dence time and high degree of affinity in a biological target binding

site. In-silico this is translated into having a prolonged ligand pose sta-

bility during the SuMD simulations and a low binding energy or inter-

action energy (ΔE) with binding site residues. Therefore, the

normalization of time (t) (stability) and ΔE (affinity) can be considered

as key descriptors for each binding mode or active hit among a virtual

screening library. A binding mode can be distinguished using the P-

score diagram represented in a quadrant matrix, (Figure 2).

The P-score defines a protein–ligand bound pose is a result of

dynamic induced-fit binding event, that relies on the residence time (t)

and total average interaction energy (ΔEFMO) for each binding mode

or hit, using the following Equation (3):

P� score¼
1þmax ΔEFMO

� �� �
� ΔEFMO

i

� �

1þmax ΔEFMO
� �� �

� min ΔEFMO
� �

�1
� �

0
@

1
A� ti

T

� �
,

ð3Þ

P-score equation: ti is the residence time of a pose or a ligand. T is the

total SuMD simulation time. ΔEi is the interaction energy of a pose or

a ligand. min(ΔE) and max(ΔE) are the lowest and highest interaction

energy, in compared poses or ligands, respectively.

The P-score equation is inspired from the rescaling normali-

zation equation where the range of all descriptors should be nor-

malized so that each descriptor contributes proportionately to a

final score.47 The P-score gives an evaluation of each binding

mode by the normalization of the ensemble of all descriptors;

time (t) and average interaction energy (ΔEFMO), rather than

using a single descriptor (residence time [t] or interaction energy

[ΔEFMO]). The P-score gives a score between 0 and 1 which is

the normalization range of all descriptors included. A P-score

value towards 1 means that this binding mode is highly priori-

tized as a stable conformation of the protein–ligand complex,

with a long residence time (t) and a low interaction energy

(ΔEFMO) (True positive). A pose with a P-score value towards 0 is

likely to be the least favorable binding mode for the protein–

ligand complex, which can be a result of having the shortest resi-

dence time, the highest interaction energy, or both combined,

(True negative).

F IGURE 2 P-score theory diagram, Norm = normalized value of time (t) and interaction energy (ΔE). Top-right green box ! protein–ligand
binding poses or hits of interest. Bottom-left red box ! least interesting protein–ligand binding poses or hits. Top-left yellow box ! protein–
ligand binding poses or hits with high affinity but low stability and bottom-right yellow-box ! protein–ligand binding poses or hits with high
stability but low affinity. Vertical line intersecting the x-axis is the mean of normalized time (t) values, and horizontal line intersecting the y-axis is
the mean of normalized values for interaction energy (ΔE).
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3 | METHODOLOGY PROTOCOL
BENCHMARKING

To benchmark our approach, we perform a comparison between Glide

docking, induced-fit docking and SuMD combined with MMPBSA,

SuMD combined with QM-FMO and SuMD combined with DA-

QM-FMO.

4 | DOCKING AND INDUCED-FIT
DOCKING

For our first case study, Pl-pro, GLIDE and Induced-fit docking mod-

ules of the Maestro 12.6.144 software (Schrodinger, LLC, New York,

NY, USA)9 were used to perform the molecular docking studies. Lig-

prep (Schrodinger, LLC)48 was employed to optimize the energy of all

compounds. The holo-closed P-loop conformation of Pl-pro (PDB ID:

7JRN) and the apo-opened P-loop conformation (PDB ID: 6WUU)

were prepared for docking using the ‘protein preparation wizard’ in
Maestro (Schrodinger, LLC).26 Bond orders and formal charges were

added to hetero groups and hydrogens were added to all atoms. Side

chains not close to the binding cavity and not participating in salt brid-

ges were neutralized to avoid interference with binding interaction

energy, and termini were capped with N-acetyl (ACE) and N-methyl

amide (NMA) groups. The OPLSe force field was used to refine the

structure and optimize the hydrogen bond network. Docking was car-

ried out using the standard precision (SP) mode on the protein struc-

ture grid, and the Glide score was used to evaluate the final binding

pose of protein–ligand complexes.

For the Induced-fit docking,49 the entire receptor molecule was

constrained and minimized with an root-mean-square deviation

(RMSD) cutoff of 0.18 Å to generate the centroid of the residues, and

the box size was automatically generated. Initial Glide docking26 was

carried out for each ligand, and the side chains were automatically

trimmed based on the B-factor. The receptor and ligand van der

Waals scaling were both set to 0.5, and 20 poses were generated.

Prime side-chain prediction and minimization were carried out to

refine residues within 5.0 Å of the ligand poses, and side chains were

optimized to induce the ligand structure and conformation to fit each

pose of the receptor structure. Finally, GLIDE standard precision

(SP) redocking was performed on the top-scoring 20 structures overall

and structures within 30.0 kcal/mol of the top-scoring structures. The

Induced-fit docking (IFD) score was generated for each output pose.

5 | RESULTS AND DISCUSSION

5.1 | First case study PL-pro target system

To test P-score protocol, Papain-like protease protein (PL-pro) for

SARS-CoV-2 coronavirus was used as our first case study.50 PL-pro is

expressed during SARS-CoV-2 viral replication and strong evidence in

support of its function suggests it as a promising target in combatting

SARS-CoV-2 infection.51 Multiple crystal structures of SARS-Cov-2

PL-pro, co-crystallized with inhibitors are available on the Protein

Data bank (Table 1).

The complexity as well as the flexibility of the Pl-pro binding

pocket, made this test case particularly challenging. The binding site

contains of a highly flexible loop named the “P-loop” that is found in

different conformations in the crystal structures. Two crystal struc-

tures were chosen for the purpose of including different states of

SARS-CoV-2 PL-pro binding site conformation; chain A from the apo-

form (PDB ID: 6WUU), and the GRL0617-bound Holo-form (PDB ID:

7JRN).52–54 Structural information of the holo-form GRL0617-bound

Pl-pro (PDB ID: 7JRN), revealed that the catalytic site is formed of a

P-loop composed of TYR-268 and GLN-269, forming Pi-Pi stacking

and hydrogen bond interactions with the bound ligand respectively.

This conformation of the P-loop bound to the ligand is named a “holo-
closed conformation” (Figure 3A).

In the apo-form of the PL-pro (PDB ID: 6WUU), the P-loop

showed an open conformation with about 90� difference in orienta-

tion of the side chains of the TYR-268 and GLN-269. This conforma-

tion of the P-loop is named an “apo-opened conformation”
(Figure 3B). This P-loop acts as a one gate-keeper structure of PL-pro

inhibitors, having a dynamic motion from opened to closed conforma-

tion upon ligand binding. Recent studies by Ismail et al, revealed that

upon applying 1 μs of classical molecular dynamics simulation to the

PL-pro apo-form, the P-loop shows a high degree of flexibility, as

shown in (Figure 3B).55 This creates a critical challenge in the discov-

ery and optimization of new hit compounds against such highly flexi-

ble binding sites.

Since accurate prediction of the correct binding-poses during vir-

tual screening is essential for the reliability of the screening process.

Our protocol was applied to a set of five different PL-pro inhibitors

with a range of binding affinities; as shown in Table 1. These are the

ligands from holo-structures of PDB IDs: 7JIV, 7JRN, 7RZC, 7SDR,

and 7TZJ, targeting the catalytic binding site of Pl-pro.56,57 The

ligands were screened against the three binding site conformations

formed by the P-loop, the holo-closed, apo-opened and CMD-opened

conformations.

The holo-closed, apo-opened and CMD-apo-opened P-loop confor-

mations forming the binding site of the PL-pro were used as starting

points for SuMD simulations for the five different PL-pro inhibitors.

Each simulation was 200 ns long with three different replicates to

ensure sufficient sampling of ligand in the binding site. The SuMD

simulations started with the ligands being placed at random coordi-

nates with a distance between 30 and 60 Å from the binding site.

As the ligands reach the vicinity of 9 Å (cut-off) with the putative

binding site in each replicate, different stabilities occur between the

ligand and the binding site, suggesting that the ligands had achieved a

different conformational sampling while forming initial binding inter-

actions with the receptor binding site residues (Appendix S1; Videos).

Treating each binding site conformation separately; holo-closed, the

apo-opened and CMD-opened P-loop conformations, the three repli-

cates of SuMD simulation were concatenated for each ligand, yielding

a total of 600 ns simulation time. Filtration was performed before

1766 IBRAHIM ET AL.
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clustering by removal of all SuMD frames with more than 9 Å dis-

tance between the ligand and the catalytic cleft. Specifically, a

cluster is a protein–ligand complex (a binding pose) formed of at

least 100 similar ligand conformations which differ by no more

than 1 Å RMSD. The total number of frames in each cluster

yields the total residence time (t) for its corresponding protein–

ligand binding mode, in which a single SuMD frame is equal to

20 ps of simulation. To calculate the interaction energy between

the protein and ligands in the generated binding modes (clus-

ters), snapshots for each cluster were extracted every 2 ns. Sub-

sequently, DA-QM-FMO-based interaction energies (ΔEFMO)

were calculated for each cluster.

5.2 | PL-pro system: Holo-closed P-loop

For the holo-closed P-loop conformation system, for each cluster of

each ligand, the time (ns) the ligand spent stably bound in a certain

pose (residence time) and the total average interaction energy

(ΔEFMO) (kcal/mol) was calculated (Figure 4A).

For the five ligands; Lig-01 (7JIV) (orange), Lig-02 (7JRN) (cyan),

Lig-03 (7RZC) (green), Lig-04 (7SDR) (magenta) and Lig-05 (7TZJ)

(dark blue), cluster representative C-01 showed the most stable con-

formation in the binding site, translated by having the longest resi-

dence time (t), of 145, 140, 186, 188, and 262 ns, respectively out of

the 600 ns concatenated trajectories, rendering the most populated

binding pose during the SuMD simulations.

Lig-03 (7RZC) (green), Lig-04 (7SDR) (magenta) and Lig-05 (7TZJ)

(dark blue) show a lower IC50 values in comparison to Lig-01 (7JIV)

(orange) and Lig-02 (7JRN) (cyan). In addition, ligands Lig-03/04/05

spends a longer residence time in the most stable conformation than

Lig-01/02.

The cluster representative C-01 showed the lowest total average

interaction energy (ΔEFMO), of �85 (kcal/mol), �71 (kcal/mol), �123

(kcal/mol), �141 (kcal/mol), respectively, for the four ligands: Lig-01

(7JIV) (orange), Lig-02 (7JRN) (cyan), Lig-03 (7RZC) (green), and Lig-04

TABLE 1 Five different PL-pro inhibitors targeting the catalytic binding site with different potencies, originally identified by high-quality
crystallographic structures were collected from the Protein Data Bank database.

Ligands

Lig-01 Lig-02 Lig-03 Lig-04 Lig-05

(PDB ID: 7JIV) (PDB ID: 7JRN) (PDB ID: 7RZC) (PDB ID: 7SDR) (PDB ID: 7TZJ)

IC50 (μM) 6.4 ± 0.6 2.3 ± 0.2 0.67 ± 0.14 0.67 ± 0.08 0.7 ± 0.1

2D Structures

F IGURE 3 (A). PDB ID: 7JRN in complex with ligand GRL0617. (B) Binding site conformations observed by the P-loop: holo-closed in ligand–
protein crystal complex, apo-opened in apo crystal structure, and CMD-apo-opened conformation.
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(7SDR) (magenta). Thus, for these four ligands, the most stable confor-

mation was calculated to also display the lowest energy, as would be

expected. However, for Lig-05 (7TZJ) (dark blue), although C-01

appears to be the most stable conformation (the longest residence

time (t) of 262 ns), it was ranked only as the second lowest total aver-

age interaction energy (ΔEFMO)-127.5 kcal/mol after C-02 with a total

average interaction energy (ΔEFMO) of �133 kcal/mol.

The P-score was calculated for each cluster of each ligand

(Figure 4A,B). The P-score diagram shows that for the five PL-pro

inhibitors Lig-01 (7JIV), Lig-02 (7JRN), Lig-03 (7RZC), Lig-04 (7SDR),

and Lig-05 (7TZJ), C-01 falls in the top right corner (green box) formed

by the mean of normalization of interaction energy (ΔEFMO) and time

(t) for all the simulations. The P-score bar-chart shows that C-01 for

Lig-01 (7JIV), Lig-02 (7JRN), Lig-03 (7RZC), Lig-04 (7SDR), and Lig-05

(7TZJ), has the highest values among other poses for each ligand sepa-

rately (Appendix S1). This indicates that C-01 is predicted to be the

highest-ranking pose for each ligand.

For the first four ligands, Lig-01 (7JIV), Lig-02 (7JRN), Lig-03

(7RZC), and Lig-04 (7SDR), C-01 showed the most stable confor-

mation with the longest residence time (ns) and the lowest total

average interaction energy (ΔEFMO) (Figure 4A). However, looking

for Lig-05 (7TZJ) (dark blue), although C-02 showed the lowest

binding interaction energy (ΔEFMO), yet it shows a low residence

time (t) in comparison to C-01, with 51 ns compared to 262 ns for

C-01. The P-score ranks the C-01 over C-02 for the lig-05 (7TZJ)

(dark blue).

5.3 | PL-pro system: Apo-opened P-loop

The same procedures of calculating the time (ns), and interaction

energy (ΔEFMO) (kcal/mol), for clusters of each ligand, were performed

on the apo-opened P-loop conformation system, (Figure 5A).

For Lig-01 (7JIV) (orange), the maximum residence times for clus-

ter representatives show a very short residence time of 28 ns found

for both C-01 and C-02 from a total simulation time of 600 ns. This

could be due to the relatively low affinity of 6.4 ± 0.6 μM (Table 1) or

indicate that the simulation was not long enough to achieve a stable

pose, when starting from the apo-opened P-loop. When considering

the total interaction energy for the ligand, C-05 showed the lowest

interaction energy of �76 kcal/mol.

For Lig-02 (7JRN) (cyan) although C-01 showed the longest

residence time in the binding site with 118 ns, C-04 showed the

lowest interaction energy with �63 kcal/mol and ranked 4th

according to the residence time with 55 ns. For Lig-03 (7RZC)

(green), C-01 showed the longest residence in the binding site with

77 ns; however, cluster C-07 showed the lowest interaction

energy with a value of �121 kcal/mol. Cluster representative C-01

for ligands, Lig-04 (7SDR) (magenta) and Lig-05 (7TZJ) (dark blue),

showed the most stable conformation in the binding site by having

the longest residence time (t) of 377s and 341 ns respectively. In

addition, C-01 for Lig-04 (7SDR) and Lig-05 (7TZJ), showed the

lowest total average interaction energy (ΔEFMO) of �132 and

�129 kcal/mol, respectively.

F IGURE 4 Holo-closed P-loop conformation analysis. Clustering of the three replicates for each PL-pro inhibitor, Lig-01 (7JIV), Lig-02 (7JRN),
Lig-03 (7RZC), Lig-04 (7SDR), and Lig-05 (7TZJ). For each cluster (C-0*) the residence time (t) (ns), interaction energy (ΔEFMO) (kcal/mol) shown on
bar plots and P-score diagram.
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F IGURE 5 Apo-opened P-loop conformation analysis. Clustering of the three replicates for each PL-pro inhibitor, Lig-01 (7JIV), Lig-02 (7JRN),
Lig-03 (7RZC), Lig-04 (7SDR), and Lig-05 (7TZJ). For each cluster (C-0*) the residence time (t) (ns), interaction energy (ΔEFMO) (kcal/mol) shown on
bar plots and P-score diagram.

F IGURE 6 CMD-opened P-loop conformation analysis. Clustering of the three replicates for each PL-pro inhibitor, Lig-01 (7JIV), Lig-02
(7JRN), Lig-03 (7RZC), Lig-04 (7SDR), and Lig-05 (7TZJ). For each cluster (C-0*) the residence time (t) (ns), interaction energy (ΔEFMO) (kcal/mol)

shown on bar plots and P-score diagram.

IBRAHIM ET AL. 1769

 1096987x, 2024, 20, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcc.27370 by N

H
S E

ducation for Scotland N
E

S, E
dinburgh C

entral O
ffice, W

iley O
nline L

ibrary on [14/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



By calculating the P-score diagram and bar-chart, indicates that

for ligands, Lig-04 (7SDR) and Lig-05 (7TZJ), C-01 is predicted to be

the highest-ranking binding pose of interest with a P-score values of

0.57 and 0.63 respectively, (Figure 5B).

For ligand Lig-03 (7RZC), the P-score ranks C-02 as the highest-

ranking pose with a value of 0.1. Although C-02 did not show the lon-

gest residence time in the binding site, with only 63 ns when com-

pared to C-01 of 77 ns, nor the lowest interaction energy �115 kcal/

mol compared to C-07 with �121 kcal/mol, yet the P-score predicts

that the highest-ranking pose is C-02.

For Lig-02 (7JRN), although C-01 shows the longest residence

time (t) of 118 ns out of the 600 ns trajectories) (Figure 5A), P-score

prioritizes C-04 as the pose of interest which shows much lower resi-

dence time (t) of 55 ns. Also, P-score can identify that C-02 for Lig-03

(7RZC) and C-04 for Lig-02 (7JRN) yet it also says that both predicted

poses are on the border line of residence time (normalization of resi-

dence time (Figure 5B), which means, these poses can be significant

but prolongation of SuMD simulations is recommended to increase

the percentage of confidence in selected poses.

However, for Lig-01 (7JIV) (orange), the P-score suggests that

none of the poses are likely to be prioritized. In the P-score diagram,

no points for the Lig-01 (7JIV) (orange) were found in the top right

corner (green box).

5.4 | PL-pro system: CMD-opened P-loop

Starting from the CMD-opened P-loop conformation system, (Figure 6).

For Lig-01 (7JIV) (orange), C-01 showed the longest residence time of

86 ns found. This could also be due to the relatively low affinity of 6.4

± 0.6 μM (Table 1). When considering the total interaction energy for

the ligand, C-04 showed the lowest interaction energy of �80 (kcal/

mol). For Lig-02 (7JRN) (cyan) although C-01 showed the longest resi-

dence time in the binding site with 125 ns, with the lowest interaction

energy with �68 kcal/mol. For Lig-03 (7RZC) (green), Lig-04 (7SDR)

(magenta) and Lig-05 (7TZJ) (dark blue), C-01 showed the longest resi-

dence in the binding site with 102s, 152, and 295 ns respectively. Also,

C-01 for Lig-03 (7RZC) (green), Lig-04 (7SDR) and Lig-05 (7TZJ),

showed the lowest total average interaction energy (ΔEFMO) of �129,

�125 kcal/mol and�126 kcal/mol, respectively.

According to the P-score diagram and bar-chart, indicates that for

all ligands, C-01 is predicted to be the highest-ranking binding pose of

interest with a P-score values of 0.12, 0.21, 0.17, 0.26, and 0.47

respectively. Although C-01 did not show the lowest total average

interaction energy, for ligands Lig-01 (7JIV) (orange), and Lig-02

(7JRN) (cyan).

6 | VALIDATION OF PREDICTED POSES BY
P-score

The accuracy of the P-score predictions was then assessed by compar-

ing the highest P-score structure for each ligand with its respective

crystallographic reference, computing the RMSD of non-hydrogen

atomic coordinates. Selected binding poses for each ligand in each

SuMD simulation system, starting from both holo-closed or apo-opened

P-loop conformation, shows an RMSD from the reference structure

that falls below 2 Å, with the lowest being 0.6 Å and the highest of

1.6 Å, (Figure 7).

This indicates a good prediction of the correct binding pose

for each ligand. The selected pose for each ligand also estab-

lished nearly the same interaction energy (ΔEFMO) against the

binding site residues of its corresponding crystalized pose (refer-

ence pose). To have a further investigation on the predicted

binding poses, detailed protein–ligand binding analysis is per-

formed on the interaction with the binding site residues

(Appendix S1 (3–8)).

7 | PROTOCOL BENCHMARKING

Simple docking and induced-fit docking were evaluated as a basis

of comparison for the binding pose prediction of the five ligands in

terms of different scoring functions, against the three P-loop con-

formation, the holo-closed, apo-opened and CMD-opened

conformations.

Simple docking using Glide and its docking score function was

successful in generating the correct binding pose (RMSD <2 Å) of only

Lig-01 (7JIV) and Lig-02 (7JRN) in the holo-closed P-loop conforma-

tions. However, simple docking as well as induced-fit docking failed to

predict the correct binding pose for the five ligands in both apo-

opened and CMD-opened P-loop conformations (RMSD >2 Å)

(Figure 8).

However, by utilizing the SuMD approach, we were able to gen-

erate the correct binding pose independent from the binding site con-

formation except for the ligand Lig-01 (7JIV) in the apo-opened

simulation. These latter results may be due to the ligand's low affinity

with the open conformation of the binding site, probably indicating

the need for longer simulation times. By contrast, when MM-PBSA

(ΔE) was applied on the clusters from the SuMD, it showed low accu-

racy in predicting the correct binding pose with 50% correct

predictions.

Taking the residence time (t) or the interaction energy DA-FMO

(ΔE) alone as a single descriptor to account for the differentiation

between binding poses, the most stable conformation as predicted

from the SuMD was also the lowest energy conformation as

predicted by DA-QM-FMO or FMO (on a single snapshot) in most

cases.

However, in some cases, either one or both metrics did not pre-

dict the experimental binding pose. This is likely due to the limited

simulation time during SuMD, and the fact that FMO accounts for the

interaction energy between ligand and binding site residues but does

not calculate the binding free energy of the system on atomic level.

Also, FMO calculations rely on a basis set of atomic orbitals to

describe the electronic structure of the system. However, if the basis

set is not sufficiently large, important electronic interactions between
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fragments may be missed, leading to errors in the predicted

properties.

Applying the P-score matrix, using the residence time and

the binding energy from MM-PBSA, FMO or DA-FMO, was apply

to accurately rank order generated poses for all ligands indepen-

dent from the starting point of the binding site. Also, in the case

of 7JIV in the apo-opened conformation simulation, the P-score

was able to identify it as “NA” (Not available) which refers to no

poses were prioritized in these simulations, eliminating the false

positive predictions. A single false prediction by the P-score is

found with the ligand 7JRN in the Apo-opened, however this is

because MM-PBSA as energy calculation is based on molecular

mechanics which is less accurate than quantum-level FMO,

therefore using less accurate methods to provide descriptors for

the P-score matrix can results in false positives.

7.1 | M-pro target system

A second SARS-CoV-2 protease protein is Mpro which is one of two

cysteine viral proteases essential for viral replication. We apply the

same procedures mentioned for PL-pro on six different ligands co-

crystalized with the Mpro protein with PDB IDs: Lig-01 (5R81), Lig-02

(5R83), Lig-03 (5R84), Lig-04 (5RE4), Lig-05 (5RF1), and Lig-06

(5RF3).58 In this case, each ligand was subjected to different sampling

time using SuMD, with a total simulation time of 257 ns all-combined.

P-score quadrant matrix was preformed using the residence time

and QM-FMO, to predict the binding pose for each ligand,

(Figure 9A). In relative comparison between all simulations combined,

P-score prioritized a binding pose for ligands; Lig-03 (5R84), Lig-04

(5RE4), and Lig-06 (5RF3), represented in clusters numbers C-01, and

for Lig-05 (5RF1) cluster number C-02, were identified as the poses of

F IGURE 7 Root-mean-square
deviations of clusters with the
highest P-score value for each PL-
pro inhibitor starting from the
three different binding sites
conformations, Lig-01 (7JIV), Lig-
02 (7JRN), Lig-03 (7RZC), Lig-04
(7SDR), and Lig-05 (7TZJ), against
its correspondent reference

crystal structure (white). NA, not
available, since P-score did not
prioritize any pose during the
simulation.
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interest. Poses were accurately predicted in the four prioritized

ligands shows a value of (RMSD <2 Å) against the reference crystal

structure. However, for the ligands Lig-01 (5R81), and Lig-02 (5R83),

P-score did not prioritize any of the poses that have been identified in

relative comparison to the rest of the ligands. By treating each of the

screened molecules separately, (Figure 9C; Appendix S1), P-score iden-

tify for ligands, Lig-01 (5R81), cluster number C-02 as potential pose

of interest, while for Lig-02 (5R83), both C-02 and C-03 falls on the

mean line that intersect the residence time.

Accordingly, P-score in these three cases is prioritizing the men-

tioned poses per ligand but with lower confidence than the first four

ligands. Therefore, P-score is suggesting that these are the potential

poses of interest, but more simulation time is needed to assure the

prediction. However, assessing the RMSD in respect to the co-

crystalized reference, we can find that P-score prioritized poses even

with low confidence, have a value of (RMSD <2.5 Å), where the

ligands bind in a well-defined orientation in respect to the reference

pose, where these poses are found to be not the lowest binding inter-

action energy nor the longest residence time, yet P-score prioritized

the nearest poses to their corresponding reference structure.

7.2 | P. aeruginosa LpxC—P-score using MMPBSA

P. aeruginosa LpxC, is a zinc metalloenzyme that catalyzes the first

step in the biosynthesis of Lipid A, an essential component of the cell

envelope of Gram-negative bacteria.59 Its binding site is formed of a

4-coordinated zinc metal centers with 3 residues; ASP-241, HIS-237,

and HIS-78, (Figure 10A). In this example, the ligand is sampled

within the binding site, however for energy calculations MM-PBSA

was used instead of DA-QM-FMO, due to the positive charge of the

Zn2+-ion, that can be challenging for QM-approaches. Therefore,

the P-score matrix, is built around residence time (t) and the binding

energy calculation from MM-PBSA. This protein is found in a com-

plex structure with PDB ID; 7CI8, where there have been many

modifications to the core scaffold and R-groups of this molecule

reported in the literature.56 We apply the P-score protocol on the

crystalized ligand and one of its core scaffold modifications (referred

as 7CI8-R).59

In both ligands, the 7CI8 and 7CI8-R, the P-score has a high confi-

dence in the binding pose predicted, represented in cluster number

C-01. The 7CI8 ligand has a well aligned conformation with Zn2+ ion

binding interaction, reflected in the RMSD of 1.2 Å with the reference

molecule. On the other hand, for the 7CI8-R as there is no crystal

structure, however they share the same common head that is binding

to the Zn2+ ion, RMSD was calculated only on the atom pair with the

reference molecule, which shows also a well aligned Zn2+-ion binding

and an RMSD of 1.3 Å. Figure 10B.

7.3 | Further study cases; heat shock protein
90, p38 kinase, and myeloid cell leukemia 1

Heat shock protein 90 (Hsp90) plays a key role in stress response and

protection of the cell against the effects of mutation, p38 Kinase

(p38), and Myeloid Cell Leukemia 1 (Mcl-1) a member of the Bcl-2

F IGURE 8 Heatmap of root-mean-square deviation (RMSD) with a threshold of 2 Å, showing lowest RMSD reach by each ligand, Lig-01
(7JIV), Lig-02 (7JRN), Lig-03(7RZC), Lig-04 (7SDR), and Lig-05 (7TZJ) (y-axis), against different method used, Glide (simple docking using glide and
docking scoring function), IFD (induced fit docking, scoring using docking scoring function), MM-PBSA (ΔE) (MM-PBSA (ΔE) binding energy used
for prediction), time (t) (using time [t] for residence), DA-FMO (ΔE) (using interaction energy of DA-QM-FMO as a single descriptor for affinity).
NA, not applicable.
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family of proteins, is overexpressed and amplified in various cancers

and promotes the aberrant survival of tumor cells that otherwise

would undergo apoptosis. These targets are for treatment of many

diseases. For the Hsp90, p38 and Mcl-1 the PDB IDs; 3FT5. 1W7H

and 4HW3 were used as representative targets with their co-

crystalized ligands.60–62

F IGURE 9 (A) P-score
diagram for Mpro target
screening. Clusters representative
for PDB IDs: 5R81, 5R83, 5R84,
5RE4, 5RF1, and 5RF3. For each
cluster numbered, and the
residence time (t) (ns), interaction
energy (ΔEFMO) (kcal/mol) shown
on bar P-score diagram x and y-

axis respectively. (B) Root-
mean-square deviation (RMSD) of
clusters with the highest P-score
value for each M-pro binders, Lig-
03 (5R84), Lig-04 (5RE4), Lig-05
(5RF1), and Lig-06 (5RF3), against
its correspondent reference
crystal structure (white). (C) P-
score diagram for Mpro target
screening. RMSD of clusters with
the low P-score confidence value
for each M-pro binders, Lig-01
(5R81), Lig-02 (5R83), against its
correspondent reference crystal
structure (white).
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As shown in (Figure 11A,B), P-score prioritized a pose for both tar-

gets the Hsp90 and p38, where cluster number C-01 showed high

confidence, that is reflected in a high P-score value of 0.74 and 0.81,

respectively. Compared to the RMSD value of the co-crystalized

poses, both ligands; Hsp90 and p38 shows a well-established super-

position on the crystalized reference with RMSD 0.95 Å and 1.70 Å,

respectively. For the case of Mcl-1, P-score matrix shows two differ-

ent clusters C-02 and C-03 on the mean value of residence time

(t) and C-01 on the mean value of interaction energy (Figure 11C).

Although the pose represented by C-03 is with acceptable range of

RMSD value 2.7 Å, it is recommended to increase the sampling phase

to allow more exploration of local minima around the protein–ligand

binding.

7.4 | Correlation between interaction energy (kcal/
mol) and residence time (t)

Pearson correlation coefficient (r) was calculated for each ligand simu-

lation independently based on the simulation data, (as detailed in the

Appendix S1; 9).63 Our analysis reveals a consistent trend; when

the sampling time is long enough to allow the ligand to adequately

explore the binding site and assume stable conformations across vari-

ous local minima, a negative correlation emerges between prolonged

residence time (t) and lower interaction energy (kcal/mol). This corre-

lation suggests that; as the energy of interaction decreases, the resi-

dence time of the ligand tends to increase, indicating a more stable

binding. This observation is supported by a high confidence level in

the prediction, as indicated by the associated p-values. However, in

simulations with insufficient dynamic sampling time, correlation is

barely predicted and mostly not found, yet the P-score can accurately

prioritize the correct binding pose by combining both descriptors in a

normalization equation. These findings underline the significance of

both descriptors; residence time and interaction energy, in character-

izing protein–ligand binding dynamics, and thus affirming the princi-

ples outlined in the P-score theory.

7.5 | P-score for hit identification

The experimental Free energy (ΔGexp) for the IC50, as shown in

Equation (4):

F IGURE 10 (A) Pseudomonas.
aeruginosa LpxC Zinc binding site,
Zn2+, between ASP-241, HIS-237
and HIS-78. (B) P-score diagram
for LpxC target. RMSD of
Clusters with the low P-score
confidence value for each M-pro
binders, 7CI8, 7CI8-R, against its
correspondent reference crystal

structure (white).
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ΔGexp ¼R�T�Ln IC50ð Þ: ð4Þ

Experimental free energy equation, R and T represent the gas constant

and temperature, respectively.

The P-score for the experimental value can be calculated by con-

sidering the normalization of the simulation time; ti/T = 1, since the

crystal structure represents a static reference pose.

7.6 | PL-pro system

Starting from the holo-closed P-loop conformation system, the P-score

predicted against P-score experimental, identify Lig-03 (7RZC), Lig-04

(7SDR), and Lig-05 (7TZJ) as the most active hits when compared to

the Lig-01 (7JIV) and Lig-02 (7JRN) (Figure 12A).

Starting from the apo-opened P-loop conformation system the P-

score identifies the Lig-04 (7SDR) and Lig-05 (7TZJ), as the most

active hits. For Lig-03 (7RZC), as mentioned earlier, prolongation of

the simulation is needed to increase the confidence of the binding

pose. Lig-02 (7JRN) falls in the less potent (red box) left bottom corner

of the graph, and for Lig-01 (7JIV) no poses were identified by the P-

score, (Figure 12B).

Starting from the CMD-opened P-loop conformation P-score

ranks Lig-04 (7SDR), and Lig-05 (7TZJ) as the most active hits when

compared to the Lig-01 (7JIV) and Lig-02 (7JRN) and Lig-03 (7RZC),

same as in apo-opened P-loop conformation system (Figure 12C).

F IGURE 11 (A,B) P-score
diagram for Hsp90 and p38
targets. root-mean-square
deviation (RMSD) of clusters with
the low P-score confidence value
for both, Hsp90 (3FT5), p38
(1W7H), against its
correspondent reference crystal
structure (white). (C) P-score

diagram for Mcl-1 target. RMSD
of Clusters with the low P-score
confidence value for Mcl-1
(4HW3), against its
correspondent reference crystal
structure (white).
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These results corelated with the experimental IC50 values showing

that the difference in potency between molecules Lig-03 (7RZC), Lig-

04 (7SDR), and Lig-05 (7TZJ) and molecules Lig-01 (7JIV), and Lig-02

(7JRN) can be identified as more potent hits in comparison to mole-

cules Lig-01 (7JIV), and Lig-02 (7JRN).

Also, there you can see a correlation between the P-score pre-

dicted and the P-score experimental, in the three cases, showing that

the holo-closed conformation has the highest correlation of 0.64 R2

compared to the Apo-opened and CMD-opened P-loop systems con-

formations. This can conclude that the more stable the binding

conformation is the better the correlation of the P-score predicted

with the P-score experimental, as in a wider open binding site confor-

mation, the system needs more sampling time to stabilize a local-

minima with a binding interaction.

7.7 | LpxC system

Both molecules in the protocol mentioned above have reported IC50

values (7CI8; IC50 = 0.88 nM and 7CI8-R; IC50 = 3.94 mM).

Although MM-PBSA energy calculation showed that the 7CI8-R bind-

ing energy is �23.9 (kcal/mol), and 7CI8 binding energy is �21.7

(kcal/mol), which is not reflecting the correct correlation with the

experimental IC50s. However, combining the residence time (t) using

the P-score predicted shows a very good correlation to distinguish

between the μM and nM range molecules, showing that 7CI8 falls in

the green box while the μM range 7CI8-R is in the red box.

(Figure 12D).

8 | CONCLUSION

The Identification of a suitably representative binding pose for a

ligand in a protein pocket is challenging as it is a complex process.

Here we introduce an approach using supervised molecular dynamics,

coupled with scoring the binding poses using energy calculation

methods; Dynamical Averaging of Quantum Mechanics Fragment

Molecular Orbital (DA-QM-FMO), FMO or MM-PBSA.

Our studies highlight the approach could be further enhanced by

combining the trajectories of the supervised molecular dynamics with

the calculated binding energy using DA-QM-FMO as the P-score.

When using both the time of the ligand in any binding pose and the

calculated binding energy are considered as descriptors and normal-

ized, giving a score between 0 and 1. The P-score was able to predict

correctly the experimental binding poses with good accuracy, inde-

pendent from the ligands starting point or the binding site conforma-

tion. In addition, it was able to predict when none of the correct

binding poses were found to be the experimental binding pose.

F IGURE 12 P-score against normalization of delta G experimental for the five ligands of PL-pro inhibitors, Lig-01 (7JIV), Lig-02 (7JRN), Lig-03
(7RZC), Lig-04 (7SDR), and Lig-05 (7TZJ). Starting from, (A) Holo-closed. (B) Apo-opened. (C) CMD-opened P-loop conformation systems.
(D) LpxC target.
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Although each of the mentioned case studies have their complexity,

PL-pro was a particularly challenging target, due to the flexibility of

the active site and the very flexible P-loop which closes over the

ligand.

Although there is an increase in time and cost using SuMD com-

pared to Glide and docking strategies. Considering the flexible nature

of protein targets is crucial for predicting the binding events hence

the introduction of dynamics is a necessity, even though the cost can

be a limitation that needs careful consideration for future

perspectives.
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