1,147 research outputs found

    Secondary implementation of interactive engagement teaching techniques: Choices and challenges in a Gulf Arab context

    Full text link
    We report on a "Collaborative Workshop Physics" instructional strategy to deliver the first IE calculus-based physics course at Khalifa University, UAE. To these authors' knowledge, this is the first such course on the Arabian Peninsula using PER-based instruction. A brief history of general university and STEM teaching in the UAE is given. We present this secondary implementation (SI) as a case study of a novel context and use it to determine if PER-based instruction can be successfully implemented far from the cultural context of the primary developer and, if so, how might such SIs differ from SIs within the US. With these questions in view, a pre-reform baseline of MPEX, FCI, course exam and English language proficiency data are used to design a hybrid implementation of Cooperative Group Problem Solving. We find that for students with high English proficiency, normalized gain on FCI improves from = 0.16+/-0.10 pre- to = 0.47+/-0.08 post-reform, indicating successful SI. We also find that is strongly modulated by language proficiency and discuss likely causes. Regardless of language skill, problem-solving skill is also improved and course DFW rates drop from 50% to 24%. In particular, we find evidence in post-reform student interviews that prior classroom experiences, and not broader cultural expectations about education, are the more significant cause of expectations at odds with the classroom norms of well-functioning PER-based instruction. This result is evidence that PER-based innovations can be implemented across great changes in cultural context, provided that the method is thoughtfully adapted in anticipation of context and culture-specific student expectations. This case study should be valuable for future reforms at other institutions, both in the Gulf Region and developing world, facing similar challenges involving SI of PER-based instruction outside the US.Comment: v1: 28 pages, 9 figures. v2: 19 pages, 6 figures, includes major reorganization and revisions based on anonymous peer review. v3: 19 pages, 6 figures, minor revisions based on anonymous peer revie

    Development of an evaluation technique for interplanetary mission astrionics Interim scientific report

    Get PDF
    Evaluating astrionics for interplanetary flyby missions using penalty function

    Spectroscopy of 13B via the 13C(t,3He) reaction at 115 AMeV

    Full text link
    Gamow-Teller and dipole transitions to final states in 13B were studied via the 13C(t,3He) reaction at Et = 115 AMeV. Besides the strong Gamow-Teller transition to the 13B ground state, a weaker Gamow-Teller transition to a state at 3.6 MeV was found. This state was assigned a spin-parity of 3/2- by comparison with shell-model calculations using the WBP and WBT interactions which were modified to allow for mixing between nhw and (n+2)hw configurations. This assignment agrees with a recent result from a lifetime measurement of excited states in 13B. The shell-model calculations also explained the relatively large spectroscopic strength measured for a low-lying 1/2+ state at 4.83 MeV in 13B. The cross sections for dipole transitions up to Ex(13B)= 20 MeV excited via the 13C(t,3He) reaction were also compared with the shell-model calculations. The theoretical cross sections exceeded the data by a factor of about 1.8, which might indicate that the dipole excitations are "quenched". Uncertainties in the reaction calculations complicate that interpretation.Comment: 11 pages, 6 figure

    Impact of Pycnonuclear Fusion Uncertainties on the Cooling of Accreting Neutron Star Crusts

    Full text link
    The observation of X-rays during quiescence from transiently accreting neutron stars provides unique clues about the nature of dense matter. This, however, requires extensive modeling of the crusts and matching the results to observations. The pycnonuclear fusion reaction rates implemented in these models are theoretically calculated by extending phenomenological expressions and have large uncertainties spanning many orders of magnitude. We present the first sensitivity studies of these pycnonuclear fusion reactions in realistic network calculations. We also couple the reaction network with the thermal evolution code dStar to further study their impact on the neutron star cooling curves in quiescence. Varying the pycnonuclear fusion reaction rates alters the depth at which nuclear heat is deposited although the total heating remains constant. The enhancement of the pycnonuclear fusion reaction rates leads to an overall shallower deposition of nuclear heat. The impurity factors are also altered depending on the type of ashes deposited on the crust. These total changes correspond to a variation of up to 9 eV in the modeled cooling curves. While this is not sufficient to explain the shallow heat source, it is comparable to the observational uncertainties and can still be important for modeling the neutron star crust.Comment: AASTeX63, 11 pages with 9 figure

    Beta-delayed proton emission in the 100Sn region

    Full text link
    Beta-delayed proton emission from nuclides in the neighborhood of 100Sn was studied at the National Superconducting Cyclotron Laboratory. The nuclei were produced by fragmentation of a 120 MeV/nucleon 112Sn primary beam on a Be target. Beam purification was provided by the A1900 Fragment Separator and the Radio Frequency Fragment Separator. The fragments of interest were identified and their decay was studied with the NSCL Beta Counting System (BCS) in conjunction with the Segmented Germanium Array (SeGA). The nuclei 96Cd, 98Ing, 98Inm and 99In were identified as beta-delayed proton emitters, with branching ratios bp = 5.5(40)%, 5.5+3 -2%, 19(2)% and 0.9(4)%, respectively. The bp for 89Ru, 91,92Rh, 93Pd and 95Ag were deduced for the first time with bp = 3+1.9 -1.7%, 1.3(5)%, 1.9(1)%, 7.5(5)% and 2.5(3)%, respectively. The bp = 22(1)% for 101Sn was deduced with higher precision than previously reported. The impact of the newly measured bp values on the composition of the type-I X-ray burst ashes was studied.Comment: 15 pages, 14 Figures, 4 Table

    The 150^{150}Nd(3^3He,tt) and 150^{150}Sm(tt,3^3He) reactions with applications to ββ\beta\beta decay of 150^{150}Nd

    Full text link
    The 150^{150}Nd(3^3He,tt) reaction at 140 MeV/u and 150^{150}Sm(tt,3^3He) reaction at 115 MeV/u were measured, populating excited states in 150^{150}Pm. The transitions studied populate intermediate states of importance for the (neutrinoless) ββ\beta\beta decay of 150^{150}Nd to 150^{150}Sm. Monopole and dipole contributions to the measured excitation-energy spectra were extracted by using multipole decomposition analyses. The experimental results were compared with theoretical calculations obtained within the framework of Quasiparticle Random-Phase Approximation (QRPA), which is one of the main methods employed for estimating the half-life of the neutrinoless ββ\beta\beta decay (0νββ0\nu\beta\beta) of 150^{150}Nd. The present results thus provide useful information on the neutrino responses for evaluating the 0νββ0\nu\beta\beta and 2νββ2\nu\beta\beta matrix elements. The 2νββ2\nu\beta\beta matrix element calculated from the Gamow-Teller transitions through the lowest 1+1^{+} state in the intermediate nucleus is maximally about half of that deduced from the half-life measured in 2νββ2\nu\beta\beta direct counting experiments and at least several transitions through 1+1^{+} intermediate states in 150^{150}Pm are required to explain the 2νββ2\nu\beta\beta half-life. Because Gamow-Teller transitions in the 150^{150}Sm(tt,3^3He) experiment are strongly Pauli-blocked, the extraction of Gamow-Teller strengths was complicated by the excitation of the 2ω2\hbar\omega, ΔL=0\Delta L=0, ΔS=1\Delta S=1 isovector spin-flip giant monopole resonance (IVSGMR). However, the near absence of Gamow-Teller transition strength made it possible to cleanly identify this resonance, and the strength observed is consistent with the full exhaustion of the non-energy-weighted sum rule for the IVSGMR.Comment: 18 pages, 13 figures, 2 table

    On the extraction of weak transition strengths via the (3He,t) reaction at 420 MeV

    Full text link
    Differential cross sections for transitions of known weak strength were measured with the (3He,t) reaction at 420 MeV on targets of 12C, 13C, 18O, 26Mg, 58Ni, 60Ni, 90Zr, 118Sn, 120Sn and 208Pb. Using this data, it is shown the proportionalities between strengths and cross sections for this probe follow simple trends as a function of mass number. These trends can be used to confidently determine Gamow-Teller strength distributions in nuclei for which the proportionality cannot be calibrated via beta-decay strengths. Although theoretical calculations in distorted-wave Born approximation overestimate the data, they allow one to understand the main experimental features and to predict deviations from the simple trends observed in some of the transitions.Comment: 4 pages, 2 figure
    corecore