157 research outputs found
Dietary Carnitine maintains energy reserves and delays fatigue of exercised African catfish (Clarias Gariepinus) fed high fat diets
Lipids, together with proteins, are traditionally considered as primary fuels during aerobic swimming. The effects of dietary fat and carnitine supplements and exercise on the energy metabolism of juvenile fish were investigated. One hundred African catfish (Clarias gariepinus) were fed four isonitrogenous diets containing a fat level of 100 or 190 g kg-1 diet and one of the two levels of carnitine (15 and 1000 mg kg-1). Fish grew from 61 to 162 g in 10 wk. Thereafter, 6 fish per group swam vigorously for 3 h and the results were compared with unexercised groups. Fish receiving 1,000 mg carnitine accumulated 2- to 3-fold more carnitine than fish receiving 15 mg carnitine. Plasma acyl-carnitine level was affected by an interaction between dietary treatment and exercise (P <0.05). Adenosine triphosphate and phosphocreatine concentrations were higher in the white muscle (WM) of exercised fish fed the high-carnitine supplements, compared with the low-carnitine fed fish (P <0.05). Adenilate energy charge indexes were higher and ammonia concentrations were lower in WM of fish fed high-carnitine and high-fat diets. Dietary carnitine supplements may be needed in growing fish when dietary lipid level is high. In that case extra dietary carnitine can maintain the body energy reserves at adequate level when fish is exposed to a short-term, exhaustive exercise, a physiologic stress common both in nature and in intensive aquaculture systems
Dramatic effect of pop-up satellite tags on eel swimming
The journey of the European eel to the spawning area in the Sargasso Sea is still a mystery. Several trials have been carried out to follow migrating eels with pop-up satellite tags (PSATs), without much success. As eels are very efficient swimmers, tags likely interfere with their high swimming efficiency. Here we report a more than twofold increase in swimming cost caused by a regular small satellite tag. The impact was determined at a range of swimming speeds with and without tag in a 2-m swimming tunnel. These results help to explain why the previous use of PSATs to identify spawning sites in the Sargasso Sea was thus far unsuccessful
Temporal progression in migratory status and sexual maturation in European silver eels during downstream migration
The onset of downstream migration of European eels is accompanied by a cessation of feeding and the start of sexual maturation which stresses the link between metabolism and sexual maturation, also suggesting an important role for exercise. Exercise has been tested with eels in swim tunnels and was found to stimulate the onset of sexual maturation. In this study, we have investigated the interplay between migration and maturation in the field during the downstream migration of female silver eels. Temporal changes in migratory status and sexual maturation among silver eels of the upstream Rhine River system over 3 months of the migration season (August, September and October) were determined in biometrical parameters, plasma 17β-estradiol and calcium levels, oocyte histology and gonadal fat levels. Furthermore, the ecological relevant parameters age as determined by otolithometry and health aspects indicated by haematocrit, haemoglobin and swim-bladder parasite load were measured. Silver eels were estimated to be 14 years old. A strong temporal progression in migratory stage was shown over the months of downstream migration. Catches probably represented a mix of reproductive migrants and feeding migrants of which the ratio increased over time. Furthermore, this study confirmed our hypothesis linking the migratory stage to early maturation as indicated by enlargement of the eyes, oocyte growth and fat deposition in the oocytes, exactly the same changes as found induced by exercise but not ruling out environmental influences. Migrants show extensive fat uptake by the oocytes, probably stimulated by the swimming exercise. In addition, at least 83% of the silver eels in this spawning run may have suffered from negative effects of swim-bladder parasites on their swimming performance
Establishing Zebrafish as a Novel Exercise Model: Swimming Economy, Swimming-Enhanced Growth and Muscle Growth Marker Gene Expression
Zebrafish has been largely accepted as a vertebrate multidisciplinary model but its usefulness as a model for exercise physiology has been hampered by the scarce knowledge on its swimming economy, optimal swimming speeds and cost of transport. Therefore, we have performed individual and group-wise swimming experiments to quantify swimming economy and to demonstrate the exercise effects on growth in adult zebrafish
Swimming physiology of European silver eels (Anguilla anguilla L.): energetic costs and effects on sexual maturation and reproduction
The European eel migrates 5,000–6,000 km to the Sargasso Sea to reproduce. Because they venture into the ocean in a pre-pubertal state and reproduce after swimming for months, a strong interaction between swimming and sexual maturation is expected. Many swimming trials have been performed in 22 swim tunnels to elucidate their performance and the impact on maturation. European eels are able to swim long distances at a cost of 10–12 mg fat/km which is 4–6 times more efficient than salmonids. The total energy costs of reproduction correspond to 67% of the fat stores. During long distance swimming, the body composition stays the same showing that energy consumption calculations cannot be based on fat alone but need to be compensated for protein oxidation. The optimal swimming speed is 0.61–0.67 m s−1, which is ~60% higher than the generally assumed cruise speed of 0.4 m s−1 and implies that female eels may reach the Sargasso Sea within 3.5 months instead of the assumed 6 months. Swimming trials showed lipid deposition and oocyte growth, which are the first steps of sexual maturation. To investigate effects of oceanic migration on maturation, we simulated group-wise migration in a large swim-gutter with seawater. These trials showed suppressed gonadotropin expression and vitellogenesis in females, while in contrast continued sexual maturation was observed in silver males. The induction of lipid deposition in the oocytes and the inhibition of vitellogenesis by swimming in females suggest a natural sequence of events quite different from artificial maturation protocols
Fish under exercise
Improved knowledge on the swimming physiology of fish and its application to fisheries science and aquaculture (i.e., farming a fitter fish) is currently needed in the face of global environmental changes, high fishing pressures, increased aquaculture production as well as increased concern on fish well-being. Here, we review existing data on teleost fish that indicate that sustained exercise at optimal speeds enhances muscle growth and has consequences for flesh quality. Potential added benefits of sustained exercise may be delay of ovarian development and stimulation of immune status. Exercise could represent a natural, noninvasive, and economical approach to improve growth, flesh quality as well as welfare of aquacultured fish: a FitFish for a healthy consumer. All these issues are important for setting directions for policy decisions and future studies in this area. For this purpose, the FitFish workshop on the Swimming Physiology of Fish (http://www.ub.edu/fitfish2010) was organized to bring together a multidisciplinary group of scientists using exercise models, industrial partners, and policy makers. Sixteen international experts from Europe, North America, and Japan were invited to present their work and view on migration of fishes in their natural environment, beneficial effects of exercise, and applications for sustainable aquaculture. Eighty-eight participants from 19 different countries contributed through a poster session and round table discussion. Eight papers from invited speakers at the workshop have been contributed to this special issue on The Swimming Physiology of Fish
Sequencing, de novo annotation and analysis of the first Anguilla anguilla transcriptome: EeelBase opens new perspectives for the study of the critically endangered european eel
Background: Once highly abundant, the European eel (Anguilla anguilla L.; Anguillidae; Teleostei) is considered to be critically endangered and on the verge of extinction, as the stock has declined by 90-99% since the 1980s. Yet, the species is poorly characterized at molecular level with little sequence information available in public databases.\ud
\ud
Results: The first European eel transcriptome was obtained by 454 FLX Titanium sequencing of a normalized cDNA library, produced from a pool of 18 glass eels (juveniles) from the French Atlantic coast and two sites in the Mediterranean coast. Over 310,000 reads were assembled in a total of 19,631 transcribed contigs, with an average length of 531 nucleotides. Overall 36% of the contigs were annotated to known protein/nucleotide sequences and 35 putative miRNA identified.\ud
\ud
Conclusions: This study represents the first transcriptome analysis for a critically endangered species. EeelBase, a dedicated database of annotated transcriptome sequences of the European eel is freely available at http://compgen.bio.unipd.it/eeelbase. Considering the multiple factors potentially involved in the decline of the European eel, including anthropogenic factors such as pollution and human-introduced diseases, our results will provide a rich source of data to discover and identify new genes, characterize gene expression, as well as for identification of genetic markers scattered across the genome to be used in various applications
- …