165 research outputs found

    In vivo phosphoenolpyruvate carboxylase activity is controlled by CO2 and O2 mole fractions and represents a major flux at high photorespiration rates

    Get PDF
    Phosphenolpyruvate carboxylase (PEPC)‐catalysed fixation of bicarbonate to C4 acids is commonly believed to represent a rather small flux in illuminated leaves. In addition, its potential variation with O2 and CO2 is not documented and thus is usually neglected in gas‐exchange studies. Here, we used quantitative NMR analysis of sunflower leaves labelled with 13CO2 (99% 13C) under controlled conditions and measured the amount of 13C found in the four C‐atom positions in malate, the major product of PEPC activity. We found that amongst malate 13C‐isotopomers present after labelling, most molecules were labelled at both C‐1 and C‐4, showing the incorporation of 13C at C‐4 by PEPC fixation and subsequent redistribution to C‐1 by fumarase (malate–fumarate equilibrium). In addition, absolute quantification of 13C content showed that PEPC fixation increased at low CO2 or high O2, and represented up to 1.8 μmol m−2 s−1, that is, 40% of net assimilation measured by gas exchange under high O2/CO2 conditions. Our results show that PEPC fixation represents a quantitatively important CO2‐fixing activity that varies with O2 and/or CO2 mole fraction and this challenges the common interpretation of net assimilation in C3 plants, where PEPC activity is often disregarded or considered to be constant at a very low rate.We thank the Australian Research Council for its financial support through a Future Fellowship, under contract FT140100645

    Net photosynthetic CO2 assimilation: more than just CO2 and O2 reduction cycles

    Get PDF
    Net photosynthetic assimilation in C3 plants is mostly viewed as a simple balance between CO2 fixation by Rubisco‐catalyzed carboxylation and CO2 production by photorespiration (and to a lower extent, by day respiration) that can be easily manipulated during gas exchange experiments using the CO2 : O2 ratio of the environment. However, it now becomes clear that it is not so simple, because the photosynthetic response to gaseous conditions involves ‘ancillary’ metabolisms, even in the short‐term. That is, carbon and nitrogen utilization by pathways other than the Calvin cycle and the photorespiratory cycle, as well as rapid signaling events, can influence the observed rate of net photosynthesis. The potential impact of such ancillary metabolisms is assessed as well as how it must be taken into account to avoid misinterpretation of photosynthetic CO2 response curves or low O2 effects in C3 leaves

    Pyridine nucleotides induce changes in cytosolic pools of calcium in Arabidopsis

    Get PDF
    NAD is a pyridine nucleotide that is involved in cell metabolism and signaling of plant growth and stress. Recently, we reported on the multifaceted nature of NAD-inducible immunity in Arabidopsis. We identified NAD as an integral regulator of multiple defense layers such as production of ROS, deposition of callose, stimulation of cell death and modulation of defense metabolism including the defense hormones SA, JA and ABA, and other defense-associated metabolites. Altogether, NAD-induced immune effects confer resistance to diverse pathogenic microbes. Our addendum to this work further demonstrates an impact of NAD on the cytosolic calcium pool, a well-known component of early plant defense response

    The response of S assimilation to CO2/O2

    Get PDF

    Seed quality and carbon primary metabolism

    Get PDF
    Improving seed quality is amongst the most important challenges of contemporary agriculture. In fact, using plant varieties with better germination rates that are more tolerant to stress during seedling establishment may improve crop yield considerably. Therefore, intense efforts are currently being devoted to improve seed quality in many species, mostly using genomics tools. However, despite its considerable importance during seed imbibition and germination processes, primary carbon metabolism in seeds is less studied. Our knowledge of the physiology of seed respiration and energy generation and the impact of these processes on seed performance have made limited progress over the past three decades. In particular, (isotope‐assisted) metabolomics of seeds has only been assessed occasionally, and there is limited information on possible quantitative relationships between metabolic fluxes and seed quality. Here, we review the recent literature and provide an overview of potential links between metabolic efficiency, metabolic biomarkers, and seed quality and discuss implications for future research, including a climate change context

    Influence of diurnal variation in mesophyll conductance on modelled 13C discrimination: results from a field study

    Get PDF
    Mesophyll conductance to CO2 (gm) limits carbon assimilation and influences carbon isotope discrimination (Δ) under most environmental conditions. Current work is elucidating the environmental regulation of gm, but the influence of gm on model predictions of Δ remains poorly understood. In this study, field measurements of Δ and gm were obtained using a tunable diode laser spectroscope coupled to portable photosynthesis systems. These data were used to test the importance of gm in predicting Δ using the comprehensive Farquhar model of Δ (Δcomp), where gm was parameterized using three methods based on: (i) mean gm; (ii) the relationship between stomatal conductance (gs) and gm; and (iii) the relationship between time of day (TOD) and gm. Incorporating mean gm, gs-based gm, and TOD-based gm did not consistently improve Δcomp predictions of field-grown juniper compared with the simple model of Δ (Δsimple) that omits fractionation factors associated with gm and decarboxylation. Sensitivity tests suggest that b, the fractionation due to carboxylation, was lower (25‰) than the value commonly used in Δcomp (29‰) and Δsimple (27‰). These results demonstrate the limits of all tested models in predicting observed juniper Δ, largely due to unexplained offsets between predicted and observed values that were not reconciled in sensitivity tests of variability in gm, b, or e, the day respiratory fractionation

    Commentary: Directions for Optimization of Photosynthetic Carbon Fixation: RuBisCO's Efficiency May Not Be So Constrained After All

    Get PDF
    The authors thank the Australian Research Council for its support through a Future Fellowship grant, under contract FT140100645

    Disruption of the CYTOCHROME C OXIDASE DEFICIENT1 Gene Leads to Cytochrome c Oxidase Depletion and Reorchestrated Respiratory Metabolism in Arabidopsis

    Get PDF
    Cytochrome c oxidase is the last respiratory complex of the electron transfer chain in mitochondria and is responsible for transferring electrons to oxygen, the final acceptor, in the classical respiratory pathway. The essentiality of this step makes it that depletion in complex IV leads to lethality, thereby impeding studies on complex IV assembly and respiration plasticity in plants. Here, we characterized Arabidopsis (Arabidopsis thaliana) embryo-lethal mutant lines impaired in the expression of the CYTOCHROME C OXIDASE DEFICIENT1 (COD1) gene, which encodes a mitochondria-localized PentatricoPeptide Repeat protein. Although unable to germinate under usual conditions, cod1 homozygous embryos could be rescued from immature seeds and developed in vitro into slow-growing bush-like plantlets devoid of a root system. cod1 mutants were defective in C-to-U editing events in cytochrome oxidase subunit2 and NADH dehydrogenase subunit4 transcripts, encoding subunits of respiratory complex IV and I, respectively, and consequently lacked cytochrome c oxidase activity. We further show that respiratory oxygen consumption by cod1 plantlets is exclusively associated with alternative oxidase activity and that alternative NADH dehydrogenases are also up-regulated in these plants. The metabolomics pattern of cod1 mutants was also deeply altered, suggesting that alternative metabolic pathways compensated for the probable resulting restriction in NADH oxidation. Being the first complex IV-deficient mutants described in higher plants, cod1 lines should be instrumental to future studies on respiration homeostasis

    Inducible NAD overproduction in Arabidopsis alters metabolic pools and gene expression correlated with increased salicylate content and resistance to Pst-AvrRpm1

    Get PDF
    Plant development and function are underpinned by redox reactions that depend on co-factors such as nicotinamide adenine dinucleotide (NAD). NAD has recently been shown to be involved in several signalling pathways that are associated with stress tolerance or defence responses. However, the mechanisms by which NAD influences plant gene regulation, metabolism and physiology still remain unclear. Here, we took advantage of Arabidopsis thaliana lines that overexpressed the nadC gene from E. coli, which encodes the NAD biosynthesis enzyme quinolinate phosphoribosyltransferase (QPT). Upon incubation with quinolinate, these lines accumulated NAD and were thus used as inducible systems to determine the consequences of an increased NAD content in leaves. Metabolic profiling showed clear changes in several metabolites such as aspartate-derived amino acids and NAD-derived nicotinic acid. Large-scale transcriptomic analyses indicated that NAD promoted the induction of various pathogen-related genes such as the salicylic acid (SA)-responsive defence marker PR1. Extensive comparison with transcriptomic databases further showed that gene expression under high NAD content was similar to that obtained under biotic stress, eliciting conditions or SA treatment. Upon inoculation with the avirulent strain of Pseudomonas syringae pv. tomato Pst-AvrRpm1, the nadC lines showed enhanced resistance to bacteria infection and exhibited an ICS1-dependent build-up of both conjugated and free SA pools. We therefore concluded that higher NAD contents are beneficial for plant immunity by stimulating SA-dependent signalling and pathogen resistance
    corecore