1,084 research outputs found

    Multifractality, Interactivity, and the Adaptive Capacity of the Human Movement System: A Perspective for Advancing the Conceptual Basis of Neurologic Physical Therapy

    Get PDF
    Background and Purpose: Physical therapists seek to optimize movement as a means of reducing disability and improving health. The short-term effects of interventions designed to optimize movement ultimately are intended to be adapted for use across various future patterns of behavior, in potentially unpredictable ways, with varying frequency, and in the context of multiple tasks and environmental conditions. In this perspective article, we review and discuss the implications of recent evidence that optimal movement variability, which previously had been associated with adaptable motor behavior, contains a specific complex nonlinear feature known as “multifractality.” Summary of Key Points: Multifractal movement fluctuation patterns reflect robust physiologic interactivity occurring within the movement system across multiple time scales. Such patterns provide conceptual support for the idea that patterns of motor behavior occurring in the moment are inextricably linked in complex, physiologic ways to patterns of motor behavior occurring over much longer periods. The human movement system appears to be particularly tuned to multifractal fluctuation patterns and exhibits the ability to reorganize its output in response to external stimulation embedded with multifractal features. Recommendations for Clinical Practice: As a fundamental feature of human movement, multifractality opens new avenues for conceptualizing the link between physiologic interactivity and adaptive capacity. Preliminary evidence supporting the positive influence of multifractal rhythmic auditory stimulation on the gait patterns of individuals with Parkinson disease is used to illustrate how physical therapy interventions might be devised to specifically target the adaptive capacity of the human movement system. Video Abstract available for more insights from the authors (see Video, Supplemental Digital Content 1, https://links.lww.com/JNPT/A183)

    Trammel net catch species composition, catch rates and metiers in southern European waters: A multivariate approach

    Get PDF
    We identified and quantified the effect of season, depth, and inner and outer panel mesh size on the trammel net catch species composition and catch rates in four southern European areas (Northeast Atlantic: Basque Country, Spain; Algarve, Portugal; Gulf of Cadiz, Spain; Mediterranean: Cyclades, Greece), all of which are characterised by important trammel net fisheries. In each area, we conducted, in 1999-2000, seasonal, experimental fishing trials at various depths with trammel nets of six different inner/outer panel mesh combinations (i.e., two large outer panel meshes and three small inner panel meshes). Overall, our study covered some of the most commonly used inner panel mesh sizes, ranging from 40 to 140 mm (stretched). We analysed the species composition and catch rates of the different inner/outer panel combinations with regression, multivariate analysis (cluster analysis and multidimensional scaling) and other 'community' techniques (number of species, dominance curves). All our analyses indicated that the outer panel mesh sizes used in the present study did not significantly affect the catch characteristics in terms of number of species, catch rates and species composition. Multivariate analyses and seasonal dominance plots indicated that in Basque, Algarve and Cyclades waters, where sampling covered wide depth ranges, both season and depth strongly affected catch species compositions. For the Gulf of Cadiz, where sampling was restricted to depths 10-30 m, season was the only factor affecting catch species composition and thus group formation. In contrast, the inner panel mesh size did not generally affect multidimensional group formation in all areas but affected the dominance of the species caught in the Algarve and the Gulf of Cadiz. Multivariate analyses also revealed 11 different metiers (i.e., season-depth-species-inner panel mesh size combinations) in the four areas. This clearly indicated the existence of trammel net 'hot spots', which represent essential habitats (e.g., spawning, nursery or wintering grounds) of the life history of the targeted and associated species. The number of specimens caught declined significantly with inner panel mesh size in all areas. We attributed this to the exponential decline in abundance with size, both within- and between-species. In contrast, the number of species caught in each area was not related to the inner mesh size. This was unexpected and might be a consequence of the wide size-selective range of trammel nets. (c) 2006 Elsevier B.V All rights reserved

    Subjective Reports and Postural Performance Among Older Adult Passengers on a Sea Voyage

    Get PDF
    We sought to evaluate changes in subjective experience and postural performance among older adult passengers during the first 2 days of a sea voyage. On a vacation cruise, volunteer passengers gave verbal ratings of subjective bodily stability and awareness of ship motion followed by performance on the tandem Romberg test while facing fore-aft and athwartship. Data were collected when the ship was at the dock and on each of the first 2 full days at sea. Ship motion reduced subjective bodily stability and performance on the Romberg test and increased awareness of ship motion. On the first day at sea, Romberg performance was more strongly impacted by motion of the ship in roll (i.e., when facing fore-aft) than in pitch (i.e., when facing athwartship). Also on the first day at sea, subjective bodily stability was correlated with Romberg performance when facing fore-aft but not when facing athwart. In summary, at the beginning of the voyage older adult passengers on a sea voyage exhibited consistent changes in subjective awareness and postural performance. Subjective reports were correlated with postural performance in ways that appeared to be functional. We suggest that this finding may help to illuminate the role of conscious awareness within ecological analyses of perception and action

    Traffic Sign Recognition based on Synthesised Training Data

    Get PDF
    To deal with the richness in visual appearance variation found in real-world data, we propose to synthesise training data capturing these differences for traffic sign recognition. The use of synthetic training data, created from road traffic sign templates, allows overcoming the problems of existing traffic sing recognition databases, which are only subject to specific sets of road signs found explicitly in countries or regions. This approach is used for generating a database of synthesised images depicting traffic signs under different view-light conditions and rotations, in order to simulate the complexity of real-world scenarios. With our synthesised data and a robust end-to-end Convolutional Neural Network (CNN), we propose a data-driven, traffic sign recognition system that can achieve not only high recognition accuracy, but also high computational efficiency in both training and recognition processes

    The Rim and the Ancient Mariner: The Nautical Horizon Affects Postural Sway in Older Adults

    Get PDF
    On land, the spatial magnitude of postural sway (i.e., the amount of sway) tends to be greater when participants look at the horizon than when they look at nearby targets. By contrast, on ships at sea, the spatial magnitude of postural sway in young adults has been greater when looking at nearby targets and less when looking at the horizon. Healthy aging is associated with changes in the movement patterns of the standing body sway, and these changes typically are interpreted in terms of age-related declines in the ability to control posture. To further elucidate the mechanisms associated with these changes we investigated control of posture in a setting that poses substantial postural challenges; standing on a ship at sea. In particular, we explored postural sway on a ship at sea when older adults looked at the horizon or at nearby targets. We evaluated the kinematics of the center of pressure in terms of spatial magnitude (i.e., the amount of sway) and multifractality (a measure of temporal dynamics). We found that looking at the horizon significantly affected the multifractality of standing body, but did not systematically influence the spatial magnitude of sway. We discuss the results in terms of age-related changes in the perception and control of dynamic body orientation

    Stride-to-stride fluctuations in transtibial amputees are not affected by changes in push-off mechanics from using different prostheses

    Get PDF
    Stride-to-stride fluctuations of joint kinematics during walking reflect a highly structured organization that is characteristic of healthy gait. The organization of stride-to-stride fluctuations is disturbed in lower-limb prosthesis users, yet the factors contributing to this difference are unclear. One potential contributor to the changes in stride-to-stride fluctuations is the altered push-off mechanics experienced by passive prosthesis users. The purpose of our study was to determine if changes in push-off mechanics affect stride-to-stride fluctuations in transtibial amputees. Twenty-two unilateral transtibial amputees were enrolled in the 6- week cross-over study, where High and Low Activity (based on the Medicare Functional Classification System) prostheses were worn for three weeks each. Data collection took place at the end of the third week. Participants walked on a treadmill in a motion capture laboratory to quantify stride-to-stride fluctuations of the lower extremity joint angle trajectories using the largest Lyapunov Exponent, and over floor-embedded force platforms to enable calculating push-off work from the prosthesis and the sound limb. Push-off work was 140% greater in the High Activity prosthesis compared to the Low Activity prosthesis (p \u3c 0.001), however no significant change was observed in stride-to-stride fluctuations of the ankle between the two prosthesis types (p = 0.576). There was no significant correlation between changes in prosthesis push-off work and the largest Lyapunov exponent. Though differences in push-off work were observed between the two prosthesis types, stride-to-stride fluctuations remained similar, indicating that prosthesis propulsion mechanics may not be a strong determinant of stride-to-stride fluctuations in unpowered transtibial prosthesis users

    Speed and Rhythm Affect Temporal Structure of Variability in Reaching Poststroke: A Pilot Study

    Get PDF
    Temporal structure reveals the potential adaptive strategies employed during upper extremity movements. The authors compared the temporal structure of upper extremity joints under 3 different reaching conditions: preferred speed, fast speed, and reaching with rhythmic auditory cues in 10 individuals poststroke. They also investigated the temporal structure of these 3 reaching conditions in 8 healthy controls to aid in the interpretation of the observed patterns in the poststroke cohort. Approximate entropy (ApEn) was used to measure the temporal structure of the upper extremity joints. ApEn was similar between conditions in controls. After stroke, ApEn was significantly higher for shoulder, elbow, and wrist both at fast speed and with rhythmic cues compared with preferred speed. ApEn at index finger was significantly higher only with rhythmic cues compared with preferred speed. The authors propose that practice reaching at faster speed and with rhythmic cues as a component of rehabilitation interventions may enhance adaptability after stroke

    Relationship of 24-hour ambulatory blood pressure and heart rate with markers of hepatic function in cirrhotic patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is evidence that in cirrhotic patients, certain hemodynamic parameters, such as blood pressure and heart rate, are related to the severity of liver disease. This study investigated whether non-invasive 24-hour ambulatory blood pressure and heart rate are more closely associated with markers of liver disease severity than conventional office measurements.</p> <p>Methods</p> <p>Ambulatory patients with cirrhosis underwent office blood pressure and heart rate measurements, 24-hour ambulatory blood pressure monitoring and blood laboratory tests.</p> <p>Results</p> <p>Fifty-one patients (32 men, mean age 57.4 ± 11.3 years) completed the study. Twenty six patients had compensated liver cirrhosis (group A) and 25 patients had more advanced liver disease (group B). Group A and B patients differed significantly both in ambulatory asleep diastolic blood pressure (p < 0.05) and office diastolic blood pressure (p < 0.01), which were lower in more advanced liver disease. Office blood pressure and heart rate correlations were similar to or even stronger than ambulatory ones. Ambulatory blood pressure and heart rate awake-asleep variation (dipping) showed a relatively flat pattern as markers of liver dysfunction were deteriorating. The strongest correlations were found with both ambulatory and office heart rate, which increased as indicators of severity of liver disease were worsening.</p> <p>Conclusions</p> <p>Heart rate seems to be a more reliable marker of ongoing liver dysfunction than blood pressure. Evaluation of blood pressure and heart rate with 24-hour ambulatory measurement does not seem to offer more information than conventional office measurements.</p

    Methods to Improve the Reliability of the Functional Reach Test in Children and Adolescents With Typical Development

    Get PDF
    Purpose: Test-retest reliability of the Functional Reach Test was examined in children with typical development by comparing standard and alternate methods. Methods: Eighty subjects ages seven to 16 years were tested and 69 retested for four methods of Functional Reach Test (ie, one-arm finger-to-finger, two-arm finger-to-finger, one-arm toe-to-finger, and two-arm toe-to-finger). Intraclass correlation coefficients and limits of agreement were calculated. Results: Intraclass correlation coefficients were high in toe-to-finger measurement methods (0.97– 0.98) for the entire group and specific age groups (00.83–0.93). Toe-to-finger methods were more reliable than finger-to-finger methods. The two-arm toe-to-finger method had the best limis of agreement with approximately ±5 cm indicated by the 95% confidence interval. Conclusions: Test-retest reliability using a toe-to-finger method of measuring is stronger than previously reported when using traditional methods. Limits of agreement analyses imply a change of 5 cm or more is likely to represent a true clinical difference when using the two-arm toe-to-finger method
    • …
    corecore