5,749 research outputs found

    Derivative based global sensitivity measures

    Full text link
    The method of derivative based global sensitivity measures (DGSM) has recently become popular among practitioners. It has a strong link with the Morris screening method and Sobol' sensitivity indices and has several advantages over them. DGSM are very easy to implement and evaluate numerically. The computational time required for numerical evaluation of DGSM is generally much lower than that for estimation of Sobol' sensitivity indices. This paper presents a survey of recent advances in DGSM concerning lower and upper bounds on the values of Sobol' total sensitivity indices S_itotS\_{i}^{tot}. Using these bounds it is possible in most cases to get a good practical estimation of the values of S_itotS\_{i}^{tot} . Several examples are used to illustrate an application of DGSM

    On the crude multidimensional search

    Get PDF
    AbstractMultivariable trial functions that depend on random parameters are maximized by crude global search. Analytical and numerical investigations of error distributions confirm recent conclusions that in practice random searching points perform better than rectangular lattices, and that quasi-random searching points are even more efficient

    Performance Criteria for Relational Database Normalization

    Get PDF
    The fourth normal form where data redundancy is eliminated is a more efficient construct for storage and user access

    Derivative based global sensitivity measures

    Get PDF
    International audienceThe method of derivative based global sensitivity measures (DGSM) has recently become popular among practitioners. It has a strong link with the Morris screening method and Sobol' sensitivity indices and has several advantages over them. DGSM are very easy to implement and evaluate numerically. The computational time required for numerical evaluation of DGSM is generally much lower than that for estimation of Sobol' sensitivity indices. This paper presents a survey of recent advances in DGSM concerning lower and upper bounds on the values of Sobol' total sensitivity indices SitotS_{i}^{tot}. Using these bounds it is possible in most cases to get a good practical estimation of the values of SitotS_{i}^{tot} . Several examples are used to illustrate an application of DGSM

    Quantum dynamics in canonical and micro-canonical ensembles. Part I. Anderson localization of electrons

    Full text link
    The new numerical approach for consideration of quantum dynamics and calculations of the average values of quantum operators and time correlation functions in the Wigner representation of quantum statistical mechanics has been developed. The time correlation functions have been presented in the form of the integral of the Weyl's symbol of considered operators and the Fourier transform of the product of matrix elements of the dynamic propagators. For the last function the integral Wigner- Liouville's type equation has been derived. The numerical procedure for solving this equation combining both molecular dynamics and Monte Carlo methods has been developed. For electrons in disordered systems of scatterers the numerical results have been obtained for series of the average values of the quantum operators including position and momentum dispersions, average energy, energy distribution function as well as for the frequency dependencies of tensor of electron conductivity and permittivity according to quantum Kubo formula. Zero or very small value of static conductivity have been considered as the manifestation of Anderson localization of electrons in 1D case. Independent evidence of Anderson localization comes from the behaviour of the calculated time dependence of position dispersion.Comment: 8 pages, 10 figure

    Međunarodna godina kemije

    Get PDF
    A method of adjusting for seasonality and trends is demonstrated using general merchanise retail data

    Sensitivity analysis methods for uncertainty budgeting in system design

    Get PDF
    Quantification and management of uncertainty are critical in the design of engineering systems, especially in the early stages of conceptual design. This paper presents an approach to defining budgets on the acceptable levels of uncertainty in design quantities of interest, such as the allowable risk in not meeting a critical design constraint and the allowable deviation in a system performance metric. A sensitivity-based method analyzes the effects of design decisions on satisfying those budgets, and a multi-objective optimization formulation permits the designer to explore the tradespace of uncertainty reduction activities while also accounting for a cost budget. For models that are computationally costly to evaluate, a surrogate modeling approach based on high dimensional model representation (HDMR) achieves efficient computation of the sensitivities. An example problem in aircraft conceptual design illustrates the approach.United States. National Aeronautics and Space Administration. Leading Edge Aeronautics Research Program (Grant NNX14AC73A)United States. Department of Energy. Applied Mathematics Program (Award DE-FG02-08ER2585)United States. Department of Energy. Applied Mathematics Program (Award DE-SC0009297

    Structural engineering of NbN/Cu multilayer coatings by changing the thickness of the layers and the magnitude of the bias potential during deposition

    Get PDF
    To determine the patterns of structural engineering of vacuum-arc coatings based on niobium nitride in the NbN/Cu multilayer composition, the effect of layer thickness and bias potential on the structural-phase state and physico-mechanical characteristics of vacuum-arc coatings was studie

    The use of plasma-based deposition with ion implantation technology to produce superhard molybdenum-based coatings in a mixed (C₂H₂+N₂) atmosphere

    Get PDF
    The influence of the pressure of a mixed gaseous atmosphere (80%C₂H₂+20%N₂) and the supply of a high-voltage negative potential in a pulsed form on the elemental and phase composition, structure and physico-mechanical characteristics of the vacuum-arc molybdenum-based coating
    corecore