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Abstract

Multivariablc trial functions that depend on random parameters arc nlaximizcd by crude global search. Analytical and
numerical investigations of error distributions confirm recent conclusions that in practice randoln searching points
perform better than rectangular latticcs~ and that quasi.. randont searching points are even more efficient.
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1. Introduction

For several decades a crude search in an n-dimensional cube of large 11, say 11 > 4" was regarded
as absolutely inefficient. Indeed, if the set of all functions with bounded first partial derivatives is
considered and N optimal searching points are selected, the convergence rate will be only N - l/n.

However, it was stressed in [5] that the last estimate cannot be improved for "bad" functions only
and these are functions equally depending on alln variables. On the contrary, if a function depends
strongly on a few of these variables, say 112 and 111« 11, the convergence rate may be much better, even
N- 1/",.

Such situations are often encountered in multicriteria optimum design of machines where the
total number of decision variables is large and cannot be reduced; however, each individual
objective depends strongly on a small number of its own "leading variables". In these problems, on
the first stage of investigation a crude search is rather efficient: the accuracy requirements are
mod"2:/ate and all the objectives can be estiolated at a r~latively small number of common trial
points [8].

Modern c0l11plex cOJnputational problems often include functions that are defined by programs
rather than by explicit formulas; it is like a 4'black box": you put in a point x == (Xl, ... , X,.) and
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obtain the value j'(x). Of course, it is llluch lTIOre difficult to estinlate the influence of each variable
than to find (approxitnately) the suprenlum of ,I'(x). Therefore, it was rccomlnended in [6, 7] to use
computational algorithms that arc '~uniformly good" (i.e. do not depend on the nunlber of leading
variables) rather than optinlal algorithms [11] whose construction relies upon the unknown
bounds of partial derivatives o.f/ (lXj.

In the present paper the dependence of error distributions on In (the effective number of leading
variables) is investigated. A sinlilar approach was used in [9] where the trial functions were
different from OUI'S and tre error distributions were different also. Nevertheless, the results of both
investigations support the above·mentioned recorulnendation.

Besides, in [9] there was no counterpart to Theoreol 5 from Section 6.

2. Classes of functions

Denote by I the unit interval 0 ~ x ~ 1so that In is the n-dimensional unit cube. Consider the set
H = H(L b ... , L,J of functions .f(x) that satisfy the follo\ving condition: for an arbitrary
x = (Xh". ,x,,) and y = (Yh ... ,y,J in I"

If(x) -.f(y)f ~ Inax Ljlxj - Yil,
1 ~j~n

where all the constants Lj ~ O.
Clearly, classes H are similar to Lipschitz classes: since

n

max Lj 'Xj - J'jl ~ L Lj IXj - Yjl ~ 11 max Lj IXj - YjJ,
1 ~j:s;" j=l 1 ~j~n

(1)

the set of all functi\Jns J (x) that satisfy (1) with all possible nonnegative L j is identical with the set of
all f(x) that satisfy a Lipschitz condition (again, wit~ ~I1 possible honnegative Lj).

3. The crude search

A set of arbitrary fixed searching points X{l), ••• ,);(N) is called a net. As an approximation to

f* = sup .((xl,
.tePI

we may consider the value

f~ = max !(X(k»).
l~k~N

This is the crude searching algorithln.
The usual definition of the approximation error for the class H is

dN = sup (j'* -Lr~).
feR
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An optimal net for the class H is defined [11] by the rcquirelnent

dN --» Inin · (2)

Theorem I. For an arbitrary net x(l), ... ,X(N) in IIJ the approxinullioll error

dN ~ eN,

lvhere the lOlver bound

CN =tmax (Ljl '" LJ\/N)l/s

and the l11axin1l1l11 is extended over all 1 ~.i 1 < ... < I,; ~ 11 £lnd 1 ~ s ~ H.

(3)

Proof (schematic). The proof of Theorem 1is similar to the proof of the corresponding theorem in
[6]. Only the volume of an s-dinlensional parallelepiped must be used rather than the volume ofan
s-dimensional pyramid in [6]. 0

The next theoreln shows that the order of the lower bound CN is the best possible.

Theorem 2. Consider an arbitrary Pr-llet ;n 1" containiny N = 2\' points. ~r these points are used as
searchin{] points il1 I'J then

dN~AcN'

lvhere A = A(11, r) depends neither on N nor on LJ, ... , LII ,

Proof (scheIJlatic). First, the "'worst" function in H (for a fixed net) should be introduced:

R(x)= min max LjrXj-xjk)l= (4)
1 ~ k ~ N 1 :;;,; j ~ II

one may easily verify that

sup R(x) = dN •
xeJ'l

Second, one lnay COlnpare eN and tiN with cp and d'l in [6] and notice that the ratios dN/dp and
CN/C{J are bounded. Then Theorem 2 becomes a corollary of the corresponding theorenl in [6]. 0

4. Trial functions

Lel us consider trial functions

.f(x,~) = - max Ljlxj - ejl, (5)
1 ~j~"

with a parameter e= (e b •.. ,~tJ) E [tl. The approximation error for the function (5) can be easily
computed: on the one hand,./'* = -.r(~,~) = 0 and on the other

.r~ = - min max Ljlxjk) - ~jl = - R(~),
k j

so that .f* -.r~ == R(~).
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Assume that eis a random point uniformly distributed in ]". Then ~ 1'1 ••• ,e" are independent
random variables unifoflnly distributed in I. We shall investigate the scaled randoln error

'1 = R(~)/eN'

And we shall consider several sets of constants that define the class H:

(6)

Lt = '.' = Lm = 1,

for 1~ In ~ 11.

s. Rectangular lattice

Lm+ 1 = ... = L" = 0 (7)

Assume that each side of1" is divided into M equal parts by parallel hyperplanes (Fig. 1). Then JIt
is divided into N =MIJ equal cubes. Consider the centers of these cubes as searching points.

One may easily verify that the values of }{(x) are repeated in each of these cubes: for an arbitrary
x the "nearest" point of the net is the center. Even lTIOre, the values of R(.x) are repeated in each of
the 2" hyperoctants ofevery cube. Therefore, denoting by I = (2M) - 1 the side ofsuch a hyperoctant
we luay conclude that the probability

P{R(~) < t} =p{ m~x Lj'i < t},
I ~ J ~ II

where' h ... "11 are independent randoln variables unifornlly distributed in 0 ~ x ~ I.
It follows from (4) that for the rectangular lattice in Fig. 1

dN = I max Lj .
I ~j~ 11

Consider now the set of constants (7). Then

p{R(e) < t} = P{'t < t, ... ,(m < t} =(t/I)m.

At the same titne according to (3), eN = 1/(2N 1
f
fll

). So,

P{ll < z} == P{R(~) < eNz} = (cNz/I)rlI ~

and this result can be formulated as follows.

Fig. 1. Rectangular lattice, N = Aln~ A! = 2.
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Theoren13. For the set ofconstants (7) andJor the rectangular lattice the distributioll,{unct;ol1 of the
rlll1doln variable '1 is

P{ll < z} = (ziT)"', 0 ~ z ~ T,

lvhere T =N l/m - 1/11.

(8)

Corollary 4. If the aSSU111ptiol1s o.fTheorenl 3 are./u(filled, the expectation and the standa.rd deviation
Of'l are

111
M'l=--T,

111 + 1
1 !lEn0'1)=-- --T

(1 111+1 111+2 ·

In all optimization theories before 1987 only the sylnnlctric case L: = ... = Ltl (Le. nz = 11) has
been considered. In that case [4] the rectangular lattice is optimal (cf. (2)): dN = eN = Ij(2N lIn),

and the upper bound of" is T = 1. However for III < 11 the upper bound T --. 00 as N --. 00. And
for 111«11 the rectangular lattice is catastrophically bad (cr. Section 8).

Remark. In our numerical experiment we have used more sophisticated sets of constants:

L 1 = ... = Lm = 1, Lm+ 1 = ... =L" =E:, (9)

with 8« 1. If N limE < 1 then from (3) one may see that still eN = 1j(2N 1/n1). And the distribution
function (8) will be changed to

flz/T}"8-(,,-m) 0 ~ z ~ 8T
P ('1 < zl. = · ,'.;:: "= ,

l J lJzjT)m, eT ~ z ::::; T.

The formulas for MIl and 0'('1) given in the last corollary will acquire a factor 1 + 0(82
).

6. Random nets

Consider searching points X·(l), ••• ,X(N) that are independent random points uniformly distrib­
uted in I". According to (4), the probability

p{R(e) ~ t} = p{ m~x Ljlx}k) - ~jl ~ t for 1~ k ~ N}.
1 ~J ~'2

If the set (7) of constants is considered then

P{R(~) ~ t} = p{ m~x IX}k) - ~jl ~ t for 1~ k ~ N}.
] ~J~ m

Let us introduce an auxiliary function i.., whose value is equal to the volume of the union of
parallelepipeds belonging to 1m where the following condition is satisfied:

;~'(Yb ... ,y".)=mes{xElml m~x IXj-Yjl~t}.
1 ~J~m
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One may easily see that

P{ R(~) ~ t} :::::I ... f~ [}'t(Y" ... ,y",)JN dYI ... dy",.

It is clear from the definition of i.t that

);.t(YJ, ... ,Ym)=1-mes{XE1ml m~x IXj-Yil<t}.
1 ~J~m

", m

=1- nInes{XjElllxj- J'il <t} = 1- nIl,(Yj) ,
j=J j=l

where

J.lr(Y) == rnes{x E I/IX - yl < t}.
Froln geometric considerations, 1lt{1 - Y) = Ilt(Y). Therefore, in the last integral each integration

froln 0 to 1 can be replaced by two integrals froln 0 to 1. Hence,

P{R(¢) ~ t} ::::: 2'" fl/2 ... f
l
12 {I _ ji Ill(Yi)}N dYI ... dy""

Jo Jo J=l

and for Jlr(Y) explicit expressions can be written: for 0 ~ t ~ t

{
t + y, 0 ~ y ~ t ,

Jl,{y) =:: 1
2t, t ~ Y'~"2

and for t~ t ~ 1

{

t +)', 0 ~ y ~ 1 - t,
J1t(Y) =

1, 1 - t ~ Y ~!.

In the proof of the next theorem only the first pair of these formulas will be used.

(10)

Theorem 5. For the set ojconstants (7) and.for rand0l11 searchil1lJ points the Unlit distribution.function
of the rando111 variable 11 is

lim P{II < z} = 1 -~ exp (-zm), 0 ~ z < 00.
N-oo

(11 )

Proof. Since [O,!J = [0, t) + [t'1J, the region of integration in (10) may be split into a sum of 2m

parallelepipeds. We shall prove that as N -. CI) the main terlTI of the distribution function is the
integral over [t,1J In where all Ilt == 2t.

First, let us compute this term:

2'"f' ... f' [1 - (2t)"'JN d.Vl •.• dy", = (1 - 2t)"'(l - (2t)III)N.
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Second~ consider one of the other parallelepipeds, e.g. [O,ty' x [t,!]m-,." with 0 < S:::; 111; the
corresponding integral

does not e:·i.ceed (2t)s.
We are now able to estimate the probability

P{11 ~ z} = p{R(e) ~ z/(2N 1
/",)}.

Using (10) with t = z/(2N 1
/
nl

) we obtain the main term

(1 - z/ N1/Itl)nI(1 - z"'JN)N

that with N --. 00 tends to exp( - zltt). Each one of the other terlns does not exceed (2t)S == z'\/Nsfm

and tends to zero as N ~ 00. 0

Corollary 6. If the assll1nptiollS o.l1"heorenl 5 are.lil(fillell., the expectation and the standard deviation
o.f'l tend to

lim Mil = r(1 + i),
N~o::J liZ

Remark. Probability distribution (11) is often called the reduced Weibull distribution.

7. Computational expetjm~'~ts

In the eight-dimensional cube 1''' functions (5) with constants (9) at e = 0.001 and three types of
searching nets were considered.

RND: For each computation a net of N =256 independent random points and a random point
ewere selected; from (4) the value R(e) and froln (6) the value 11 were computed. Using 1024
independent values of 11 a normcd histogram approximating the density p,,(z) was constructed (with
LIz = 0.1), and MIl, D11 and SUP11 were estimated.

LAT: A rectangular lattice (Fig. 1) with N = 28 = 256 points \vas fixed. For each computa­
tion a randoln point ~ was selected, from (4) and (6) the values R(e) and 11 were computed, and so
on ...

LPT: As a searching net, N = 256 initial points of a quasi-random LPt-sequence [1,2, 10] were
fixed. Initial segments containing N = 2v points of such sequences at all v ~ Vo are ~..nets and
satisfy Theorem 2. For each computation a random point ~ was selected, and so on ...

In all experiments the randOITI points ~ were obtained from a pseudo-random number generator
that had been tested in [3]. "fhe random searching points in RND were computed from nonover­
lapping parts of the same pseudo-random sequence.
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Table 1
Computational results for different 111 at I; = 0.00]

112 2 3 4 5 6 7 8

LAT 63.7 5.23 2.33 1.59 1.25 1.07 0.96 0.89
i1 RND 1.04 0.90 0.93 1.00 1.03 1.07 1.11 1.15

LPT 0.56 (\74 0.84 0.91 0.98 L04 1.07 1.11

LAT 128.0 8.0 3.2 2.0 1.5 1.3 1.1 1.0

'1~ RND 6.9 2.7 2.4 2.3 2.1 2.0 2.0 1.9
LPT 1.8 1.9 1.9 1.9 1.9 2.0 1.8 1.9

LAT 37.0 1.9 0.62 0.32 0.22 0.16 0.12 0.10
(J RND 0.91 0.47 0.36 0.33 0.29 0.27 0.24 023

LPT 0.22 0.31 0.29 0.27 0.25 0.24 0.23 (\ ~..,

\;._~..

8. Numerical results

Table 1contains the computed empirical estimates ~ ;::; Ml1, (J ~ (D'l)1 /2 and 11~ ~ sup 1'/ = dN / eN'

Although the distributions of 11 are different from those obtained in [9], the conclusions from Table
1 confirm the main conclusions in [9].

First, at In =8 when the trial functions depend on all the variables Xl' ••• ' Xs equally the
rectangular lattice is optimal, the least mean error ij is for LAT. However, the difference between
the performances of all three types of searching points is small. In other words, the class of
functions H with L] = ". = Ln is so "bad", that an average randoln net is almost as good as the
optimal one.

As m is decreased, the mean error for LAT is increasing while the mean errors for RND and LPT
are decreasing. At In == 6 the mean errors for all three types of nets are practically equal. But at
m ~ 3 the lnean errors for RND and LPT are much smaller than for LAT.

Second, at all In's the mean errors for LPT are better than the mean errors for RND, though at
m ~ 4 the difference is sligh t.

Third, the increase of the mean errors for LAT at In = 2 and 111 = 1 may be regarded as
catastrophic.

The maximum values '1~ in Table 1 behave, in general, like ij. Here the line containing 11~

for LPT looks very spectacular: all the values are almost the same. This can be interpreted
as an illustration to Theorem 2: the ratios dN/CN are bounded by A that does not depend
on Lt, ... ,Ln•

Despite e "# 0, almost all values in Table 1 for LAT agree with values obtained from formulas in
Section 5. Table 2 enables the comparison ofcomputed ij for RND with limit values obtained from
Theorem 5 at N = 00.

Clearly, the most reliable net for practical computations is LPT though here we have no
analytical estimates of ij.
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Table 2
Conlputed ij and IimN-tcr.. Mil for RND

nl 2 3 4 5 6 7 8

N =256 1.04 0.90 0.93 1.00 1.03 1.07 1.11 1.15
N = 00 1.00 0.886 0.893 0.906 0.918 0.927 0.935 0.942

LPT
2

RND LAT

~
i ~

0 0.8 1.6 0 0.8 1,6 0 0,8 z

Fig. 2. Error distributions for ill =8 (symlTIctric case).

9. Error distributions

At In =8 (Fig. 2) the error distributions for RND and LPT are approximately Gaussian (a; a)
with a = ij and (J' from Table 1. The histogram for LAT is in full agreement with the power Jaw (8).

As In is decreased, the distribution~ for RND and LPT deviate for Gaussian. In Fig. 3 all the
distributions at In =: 3 are plotted. Here again the histograln for LAT is in good agreement with (8),
while the histogram for RND may be regarded as an approximation to the asymptotic law (11).

In general, the agreement of RND histograms with the law (11) worsens as 111 is increased. This
may be explained by the fact that the main on~itted term in the proof of Theorem 5 was O(N- 1

/
m

).

Finally, consider the limit case in = 1, e = O. In this case the classes H are identical with Lipschitz
classes that \vere investigated in [9] where analyticaJ error distributions were found: for IJPT the
density is

{
I - (2N) - 1, 0 ~ z < 1,

p,,(z) = (2N) - t, 1 < z :s; 2;

for RND the density is p" =e- =, 0 < Z < 00; and for LA1~ the density is (8): uniform distribution in
a huge interval 0 < Z < T = 128.

The histograms in Fig. 4 are for RND and LPT. In both cases there are remarkable distortions at
small z due to e # o. The SlDooth dotted curves are p = 8240z7.



292 I.M. Sobol', 8.0. BakinlJournal ofComputational and Applied Mathelnatics 56 (/994) 283 --293

p
LAT

1",/('
-:-yu--'
j

,-L- __•._'----J--L.~~_

o 0.8 1,6 2.4 3.2

LPT RNO

Fig. 3. Error distributions for In = 3 (nonsymmetric case).

LPT

2

RND

FIg. 4. Error distributions for 11~ == 1 (strong nonsymJnetry).

The power law Z"-I can be derived from quite general considerations. Asrume !!lat each node
X(k) is surrounded by a box where

max Ljlxj - x~k)1 < t.
1 ~j~n

Its volume is (2t/ L1) '" (2t/ Ln). For sufficiently small t intersections of such boxes with the
boundaries of ,n can be neglected and the probability

p{R(e) < t} = N(2t)nj(L t ... Ln).
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In our case L1 = 1, L2 = H. = L" = B, eN = (2N)-1 and we conclude that for sufficiently small z

P{17 < z} = z"!(eN)n-J.

Hence, the density of 17 is proportional to z'J - 1•
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