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Abstract

Multivariable trial functions that depend on random parameters are maximized by crude global search. Analytical and
numerical investigations of error distributions confirm recent conclusions that in practice random searching points
perform better than rectangular lattices, and that quasi-random scarching points are even more efficient.
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1. Introduction

For several decades a crude search in an n-dimensional cube of Jarge n, say n > 4, was regarded
as absolutely inefficient. Indeed, if the set of all functions with bounded first partial derivatives is
considered and N optimal searching points are selected, the convergence rate will be only N ™1/,
However, it was stressed in [5] that the last estimate cannot be improved for “bad” functions only
and these are functions equally depending on all n variables. On the contrary, if a function depends
strongly on a few of these variables, say m and m <« n, the convergence rate may be much better, even
N~ llm.

Such situations are often encountered in multicriteria optimum design of machines where the
total number of decision variables is large and cannot be reduced; however, each individual
objective depends strongly on a small number of its own “leading variables”. In these problems, on
the first stage of investigation a crude search is rather efficient: the accuracy requirements are
mod-ate and all the objectives can be estimated at a relatively small number of common trial
points [8].

Modern complex computational problems often include functions that are defined by programs
rather than by explicit formulas; it is like a “black box™: you put in a point x = (xy,...,x,) and
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obtain the value f(x). Of course, it is much more difficult to estimate the influence of each variable
than to find (approximately) the supremum of f(x). Therefore, it was recommended in [6, 7] to use
computational algorithms that are “uniformly good™ (i.c. do not depend on the number of leading
variables) rather than optimal algorithms [11] whose construction relies upon the unknown

bounds of partial derivatives df/0x;.
In the present paper the dependence of error distributions on m (the effective number of leading

variables) is investigated. A similar approach was used in [9] where the trial functions were
different from ours and the error distributions were different also. Nevertheless, the results of both
investigations support the above-mentioned recommendation.

Besides, in [9] there was no counterpart to Theorem 5 from Section 6.

2. Classes of functions

Denote by I the unit interval 0 < x < 1 so that I" is the n-dimensional unit cube, Consider the set
H=H(Ly,....L,) of functions f(x) that satisfy the following condition: for an arbitrary

X =(Xy,...,x,) and y = (py,...,p,) in I"

|f(x)=f(nl <  max Lilx; =yl (1)

<Js€n

where all the constants L; > 0.
Clearly, classes H are similar to Lipschitz classes: since

n
max Ljlx;—yl < Y Lilx;~yjl <n max Ljlx; =y,
j=1

1<jgn

<~ J s

the set of all functivns f (x) that satisfy (1) with all possible nonnegative L; is identical with the set of
all f(x) that satisfy a Lipschitz condition (again, with all possible onnegative L;).

3. The crude search
A set of arbitrary fixed searching points x'", ..., x'™ is called a net. As an approximation to

f* = SUpf(.\'),

xel”

we may consider the value

fi= max f(x¥).
1<ksN

This is the crude searching algorithm.
The usual definition of the approximation error for the class H is

dy = sup(f* —f¥).

feH



LM. Sobol', $.G. Bakin/Journal of Computational and Applied Mathematics 56 (1994) 283-293 285

An optimal net for the class H is defined [11] by the requirement

dy = min. (2)

Theorem 1. For an arbitrary net xV,...,x™ in I" the approximation error

dy 2 ¢y,
where the lower bound

ey = ymax(L;, ... Ly/N)'¥ (3)
and the maximum is extended over all 1 <j; < - <jy<nand 1 <s<n

Prosef (schematic). The proof of Theorem 1 is similar to the proof of the corresponding theorem in
[6]. Only the volume of an s-dimensional parallelepiped must be used rather than the volume of an

s-dimensional pyramid in [6]. [J

The next theorem shows that the order of the lower bound cy is the best possible.
Theorem 2. Consider an arbitrary Pe-net in 1" containing N = 2* points. If these points are used as
searching points in I" then

dN g A(.Na

where A = A(n, ) depends neither on N nor on Ly, ..., L,.

Proof (schematic). First, the “worst” function in H (for a fixed net) should be introduced:

R(x)= min max L;|x; —x|: )

1<ksNIgjsn
one may easily verify that
sup R(x) = dy.

xel"
Second, one may compare ¢y and dy with ¢, and d,, in [6] and notice that the ratios dy/d, and
¢/ ¢, are bounded. Then Theorem 2 becomes a corollary of the corresponding theoremin {6]. O

4. Trial functions

Let us consider trial functions

f(x¢) = — max Lilx; =&, (5)
l<j<n
with a parameter ¢ = (£,,...,¢,) € I". The approximation error for the function (5) can be casily
computed: on the one hand, /* = — f(¢,¢) = 0 and on the other
[% = —minmax L|x{" — &l = = R(®),
k J

so that f* — f§ = R(¢).
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Assume that ¢ is a random point uniformly distributed ir I". Then ¢y, ..., ¢, are independent
random variables uniformly distributed in 1. We shall investigate the scaled random error

n=R()/cy. (6)
And we shall consider several sets of constants that define the class H:
LI = e =L,,,=1, Lm+l = =Ln=0 (7)

forl <m<n

S. Rectangular lattice

Assume that each side of I" is divided into M equal parts by parallel hyperplanes (Fig. 1). Then I"
is divided into N = M" equal cubes. Consider the centers of these cubes as searching points.

One may easily verify that the values of R{x) are repeated in each of these cubes: for an arbitrary
x the “nearest” point of the net is the center. Even more, the values of R(x) are repeated in each of
the 2" hyperoctants of every cube. Therefore, denoting by | = (2M )~ ! the side of such a hyperoctant
we mdy conclude that the probability

P{R¢) <1t} = P{lm&;x Li{;< t},
sjisu

where {,, ..., {, are independent random variables uniformly distributed in 0 < x < 1.
It follows from (4) that for the rectangular lattice in Fig. 1

dy =1 max L;.

1<jgn
Consider now the set of constants (7). Then
P{RE) <t} =Py <t,...Cu <t} =(t/))".
At the same time according to (3), cy = 1/2N'™). So,
P{n <z} = P{R() < cyz} = (enz/D)",

and this result can be formulated as follows.

]
]
1
1
x 10X

Fig. 1. Rectangular lattice, N = M", M = 2.
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Theorem 3. For the set of constants (7) and for the rectangular lattice the distribution function of the
random variable y is

P{n<z}=(/T), 0<:z<T, (8)
where T = N1/m-1m

Corollary 4. If the assumptions of Theorem 3 are fulfilled, the expectation and the standard deviation
of y are

m 1 m
M = m+1 L o= m+iym+2 "
In all optimization theories before 1987 only the symmetric case L; = .- = L, (i.e. m = n) has

been considered. In that case [4] the rectangular lattice is optimal (cf. (2)): dy = ¢y = 1/2N™),
and the upper bound of nis T = 1. However for m < n the upper bound T — oo as N — o0. And
for m«n the rectangular lattice is catastrophically bad (cf. Section 8).
Remark. In our numerical experiment we have used more sophisticated sets of constants:

Ly= - =Lm=1.~ Lm+1 ==L, =g, (9)

with e« 1. If N'™¢ < 1 then from (3) one may see that still cy = 1/(2N ™). And the distribution
function (8) will be changed to

{’(Z/T)naﬂn-nl), 0 é z S BT,
/1), eT<z2<T.

The formulas for My and o(r) given in the last corollary will acquire a factor 1 + O(e?).

Pip<z} =

6. Random nets

Consider searching points x‘*, ..., x™ that are independent random points uniformly distrib-
uted in I". According to (4), the probability

P{R(E) =1t} = P{ max L;|x¥ ~ &> tfor 1 k< N}.
I<jgn
If the set (7) of constants is considered then
P{RE) =t} = P{ max |x¥ —¢&[>tfor 1 <k < N}.
1<jgsm

Let us introduce an auxiliary function 4, whose value is equal to the volume of the union of
parallelepipeds belonging to I" where the following condition is satisfied:

max |x; —y;| > t}.

1<jsm

)'l(yb "‘,ym) = mes {’( 6 Im
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One may easily see that

1 1
P{R(f)?f} =j J‘ [/1:(}’1,---,,\".»;)]Ndyn"'d)’m-
0 0 ’

It is clear from the definition of 4, that

max |x; - yjl <1}.

1<jsm

'J"I(yh '”5ym) = 1 — mes {.\’ € Im

m m
=1—[]mes{xjelllx;—yl<t}=1-[] m(y),
=1 ji=1

J

where

fx —yl < t}.

wly) = mes {.\' el

From geometric considerations, g,(1 ~ y) = p,(y). Therefore, in the last integral each integration
from 0 to 1 can be replaced by two integrals from 0 to 3. Hence,

1/2 1/2 m N
P{R(E) 2 l} S ZMJ‘ J {l - H ”l(yj)} dyl "'dym, (10)
i=1

0 0

and for y,(y) explicit expressions can be written: for 0 <t < 3

0) {r+y, O0<y<y,
LiY) =
HOT =0, t<y<y

and for 3 <t < 1

In the proof of the next theorem only the first pair of these formulas will be used.

Theorem 5. For the set of constants (7) and for random searching points the limit distribution function
of the random variable n is

lim P{y <z} =1-exp(—z"), 0<z< 0. (11
N— o

Proof. Since [O,—;] =[0,1) + {t,%], the region of integration in (10) may be split into a sum of 2"
parallelepipeds. We shall prove that as N — oo the main term of the distribution function is the
integral over [1,5]™ where all y, = 2t.

First, let us compute this term:

¥ ¥
2 f f [1 = @01V dy, - dy, = (1 = 207(1 = 20)")".
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Second. consider one of the other parallelepipeds, e.g. [0,0)*x[t,3]™ % with 0 <s <m; the
corresponding integral

t s N
Z’J' f { n (t +y)RO)"" ‘} dyp - dyg(1 = 20"
0 j=1

0

does not exceed (2¢)°,
We are now able to estimate the probability

P{n >z} = P{R() > z/@N"™)}
Using (10) with ¢ = z/(2N'™) we obtain the main term
(1 _ Z/Nl/m)m(l - Z"'/N)N

that with N — oo tends to exp(—z™). Each one of the other terms does not exceed (21)* = z*/ N
and tends to zeroas N —» 0. [J

Corollary 6. If the assumptions of Theorem S are fulfiiled, the expectation and the standard deviation
of i tend to

2 1\\'?
lim My = I’(l +l), lim a(y) = (F(l +~)m I‘l(l +~)) .
N m Nooo m m

Remark. Probability distribution (11) is often called the reduced Weibull distribution.

7. Computational expesimesnts

In the eight-dimensional cube I functions (5) with constants (9) at ¢ = 0.001 and three types of
searching nets were considered.

RND: For each computation a net of N = 256 independent random points and a random point
¢ were selected; from (4) the value R(¢) and from {6) the value n were computed. Using 1024
independent values of # a normed histogram approximating the density p,(z) was constructed (with
4z =0.1), and My, Dy and sup y were estimated.

LAT: A rectangular lattice (Fig. 1) with N = 28 = 256 points was fixed. For each computa-
tion a random point ¢ was selected, from (4) and (6) the values R(¢) and # were computed, and so
on...

LPT: Asasearching net, N = 256 initial points of a quasi-random LP,-sequence [1,2, 10] were
fixed. Initial segments containing N = 2* points of such sequences at all v > v, are P-nets and
satisfy Theorem 2. For each computation a random point ¢ was selected, and so on ...

In all experiments the random points & were obtained from a pseudo-random number generator
that had been tested in [3]. The random searching points in RND were computed from nonover-
lapping parts of the same pseudo-random sequence.
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Table 1
Computational results for different m at ¢ = 0.00!

m 1 2 3 4 5 6 7 8

LAT 63.7 5.23 2.33 1.59 1.25 1.07 0.96 0.89
7 RND 1.04 0.90 093 1.00 1.03 1.07 111 £.1S

LPT 056 074 084 091 098 104 107 LI

LAT 1280 80 32 20 15 13 1.1 1.0
nt RND 69 2.7 24 23 § 20 20 19

LPT 18 1.9 19 19 19 20 1.8 19

LAT 370 1.9 0.62 0.32 0.22 0.16 0.12 0.10
a RND 091 0.47 0.36 0.33 0.29 0.27 0.24 023
LPT 022 031 0.29 0.27 0.25 0.24 0.23 ¢ln

8. Numerical results

Table 1 contains the computed empirical estimates i ~ Mn, o = (Dy)!/? and 5% ~ supy = dy/cx.
Although the distributions of » are different from those obtained in [9], the conclusions from Table
1 confirm the main conclusions in [97.

First, at m =8 when the trial functions depend on all the variables x,,...,xg equally the
rectangular Jattice is optimal, the least mean error 7 is for LAT. However, the difference between
the performances of all three types of searching points is small. In other words, the class of
functions H with L, = .- = L, is so “bad”, that an average random net is almost as good as the
optimal one.

As m is decreased, the mean error for LAT is increasing while the mean errors for RND and LPT
are decreasing. At m = 6 the mean errors for all three types of nets are practically equal. But at
m < 3 the mean errors for RND and LPT are much smaller than for LAT.

Second, at all m’s the mean errors for LPT are better than the mean errors for RND, though at

m 2 4 the difference is slight.
Third, the increase of the mean errors for LAT at m =2 and m =1 may be regarded as

catastrophic.

The maximum values 7% in Table | behave, in general, like 7. Here the line containing 5}
for LPT looks very spectacular: all the values are almost the same. This can be interpreted
as an illustration to Theorem 2: the ratios dy/cy are bounded by A that does not depend
onlL,,...,L,.

Despite ¢ # 0, almost all values in Table 1 for LAT agree with values obtained from formulas in
Section 5. Table 2 enables the comparison of computed 7 for RND with limit values obtained from

Theorem 5 at N = co.
Clearly, the most reliable net for practical computations is LPT though here we have no

analytical estimates of .
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Table 2

Computed 7 and limy.., My for RND

m 1 2 3 4 5 6 7 8
N=25 104 090 0.93 1.00 1.03 1.07 .11 1.15

N=w 100 0.886 0893 0906 0918 0927 0935 0942

LPT RND LAT

WS W PE— P SO - At i
¢} 08 1.6 0 oe 16 a 08 z

Fig. 2. Error distributions for m = 8 (symmetric case).

9. Error distributions

At m = 8 (Fig. 2) the error distributions for RND and LPT are approximately Gaussian (a; o)
with a = ij and o from Table 1. The histogram for LAT is in full agreement with the power law (8).
As m is decreased, the distributions for RND and LPT deviate for Gaussian. In Fig. 3 all the
distributions at m = 3 are plotted. Here again the histogram for LAT is in good agrecment with (8),
while the histogram for RND may be regarded as an approximation to the asymptotic law (11).
In general, the agreement of RND histograms with the law (11) worsens as m is increased. This
may be explained by the fact that the main omitted term in the proof of Theorem 5 was O(N ~ /™).
Finally, consider the limit case in = 1, = 0. In this case the classes H are identical with Lipschitz
classes that were investigated in [9] where analytical error distributions were found: for LPT the

density is

I1-Q2N)"!, 0<z<1,
pE =5 .
2N)™ 1, l<zg2;

for RND the density is p, = € %,0 < z < oo0;and for LAT the density is (8): uniform distribution in

a huge interval 0 < z < T = 128.
The histograms in Fig, 4 are for RND and LPT. In both cases there are remarkable distortions at

small z due to ¢ # 0. The smooth dotted curves are p = 824027,
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Fig. 3. Error distributions for m = 3 (nonsymmetric case).
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Fig. 4. Error distributions for m = 1 (strong nonsymmetry).

The power law z"~! can be derived from quite general considerations. Ascume that each node
x™ is surrounded by a box where

max Ljlx; — x¥| <t.
1€j<gn

Its volume is {2t/L,) ---(2t/L,). For sufficiently small ¢ intersections of such boxes with the
boundaries of " can be neglected and the probability

P{R(E) <t} = NQ)"/(L; ... L,).
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Inourcase Ly =1,L, = -+ =L,=¢ cy=(2N)"" and we conclude that for sufficiently small z
P{n <z} =z2"/(eN)y""1.

Hence, the density of 5 is proportional to 2"~
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