558 research outputs found

    A \u3cem\u3eMedicago Truncatula\u3c/em\u3e Population Segregating for Aluminum Tolerance

    Get PDF
    Aluminium (Al) toxicity, manifested in inhibition of root elongation and reduced plant growth, is a major cause of poor crop yields on acid soils, which comprise up to 40% of the world’s arable land. Al toxicity associated with acid soils has been a major obstacle in alfalfa (Medicago sativa) production in the USA, as well as in tropical areas of the world. Recent molecular marker mapping studies indicate that the genomes of M. truncatula and M. sativa are highly similar (Choi et al., 2004). Thus, M. truncatula could be used as a source of genes that could be used to improve Al tolerance of cultivated alfalfa. The objective of this study is to identify QTL for Al tolerance in M. truncatula, using M. truncatula EST-SSR markers and a population from a cross between the Al sensitive Jemalong A17 and an Al tolerant USDA plant introduction, PI 566890 (Sledge et al., 2004), with the long term goal of cloning Al tolerance genes to improve cultivated alfalfa for Al tolerance

    Efficacy of Bevacizumab-Capecitabine in Combination for the First-Line Treatment of Metastatic Breast Cancer

    Get PDF
    There is an ongoing need for development of new chemotherapeutic regimens for metastatic breast cancer [mBC], especially when tumors lack therapeutic targets such as the estrogen or progesterone receptor [ER/PR], or the human epidermal growth factor receptor-2 [HER2]. Capecitabine is an orally bioavailable fluoropyrimidine approved for monotherapy in mBC, and bevacizumab is a monoclonal antibody targeting vascular endothelial growth factor which has shown to be active in mBC and tolerable in combination with other chemotherapeutics. The combination of these two agents has been explored in multiple phase II and III clinical studies, with improvements in progression-free survival and overall response rates noted as compared to capecitabine monotherapy. However, the use of bevacizumab in combination with capecitabine and other chemotherapy agents for mBC remains beset with controversy due to safety concerns, cost issues, and pending regulatory decisions

    Aluminum Tolerance QTL in Diploid Alfalfa

    Get PDF
    Aluminum (Al) toxicity associated with acid soils greatly inhibits alfalfa (Medicago sativa L.) productivity throughout much of the world’s major grassland areas. In this paper, we report the identification of quantitative trait loci (QTL) controlling aluminum tolerance in diploid alfalfa (Medicago sativa L). An in vitro callus growth bioassay was used to select aluminum tolerant and aluminum sensitive parents, and to screen an F2 population for aluminum tolerance. Fifty-eight cDNA probes were mapped to nine linkage groups, and the F2 genotypic classes were contrasted with means from the callus growth bioassay using ANOVA. We also used Mapmaker-QTL to identify markers associated with aluminum tolerance. Four markers, UGAc044, UGAc053, UGAc141, and UGAc782, were found to be associated with aluminum tolerance. UGAc044 had the greatest effect, accounting for 15% (LOD 2.3) of the variation in aluminum tolerance

    Characterization of Ceriporiopsis subvermispora Bicupin Oxalate Oxidase Expressed in Pichia pastoris

    Get PDF
    Oxalate oxidase (E.C. 1.2.3.4) catalyzes the oxygen-dependent oxidation of oxalate to carbon dioxide in a reaction that is coupled with the formation of hydrogen peroxide. Although there is currently no structural information available for oxalate oxidase fromCeriporiopsis subvermispora (CsOxOx), sequence data and homology modeling indicate that it is the first manganese-containing bicupin enzyme identified that catalyzes this reaction. Interestingly, CsOxOx shares greatest sequence homology with bicupin microbial oxalate decarboxylases (OxDC). We show that CsOxOx activity directly correlates with Mn content and other metals do not appear to be able to support catalysis. EPR spectra indicate that the Mn is present as Mn(II), and are consistent with the coordination environment expected from homology modeling with known X-ray crystal structures of OxDC from Bacillus subtilis. EPR spin-trapping experiments support the existence of an oxalate-derived radical species formed during turnover. Acetate and a number of other small molecule carboxylic acids are competitive inhibitors for oxalate in the CsOxOx catalyzed reaction. The pH dependence of this reaction suggests that the dominant contribution to catalysis comes from the monoprotonated form of oxalate binding to a form of the enzyme in which an active site carboxylic acid residue must be unprotonated

    Viral Load and Cell Tropism During Early Latent Equid Herpesvirus 1 Infection Differ Over Time in Lymphoid and Neural Tissue Samples From Experimentally Infected Horses

    Get PDF
    Upper respiratory tract infections with Equid Herpesvirus 1 (EHV-1) typically result in a peripheral blood mononuclear cell-associated viremia, which can lead to vasculopathy in the central nervous system. Primary EHV-1 infection also likely establishes latency in trigeminal ganglia (TG) via retrograde axonal transport and in respiratory tract-associated lymphatic tissue. However, latency establishment and reactivation are poorly understood. To characterize the pathogenesis of EHV-1 latency establishment and maintenance, two separate groups of yearling horses were experimentally infected intranasally with EHV-1, strain Ab4, and euthanized 30 days post infection (dpi), (n = 9) and 70 dpi (n = 6). During necropsy, TG, sympathetic trunk (ST), retropharyngeal and mesenteric lymph nodes (RLn, MesLn) and kidney samples were collected. Viral DNA was detected by quantitative PCR (qPCR) in TG, ST, RLn, and MesLn samples in horses 30 and 70 dpi. The number of positive TG, RLn and MesLn samples was reduced when comparing horses 30 and 70 dpi and the viral copy number in TG and RLn significantly declined from 30 to 70 dpi. EHV-1 late gene glycoprotein B reverse transcriptase PCR and IHC results for viral protein were consistently negative, thus lytic replication was excluded in the present study. Mild inflammation could be detected in all neural tissue samples and inflammatory infiltrates mainly consisted of CD3+ T-lymphocytes (T-cells), frequently localized in close proximity to neuronal cell bodies. To identify latently infected cell types, in situ hybridization (ISH, RNAScope®) detecting viral DNA was used on selected qPCR- positive neural tissue sections. In ganglia 30 dpi, EHV-1 ISH signal was located in the neurons of TG and ST, but also in non-neuronal support or interstitial cells surrounding the neuron. In contrast, distinct EHV-1 signal could only be observed in neurons of TG 70 dpi. Overall, detection of latent EHV-1 in abdominal tissue samples and non-neuronal cell localization suggests, that EHV-1 uses T-cells during viremia as alternative route toward latency locations in addition to retrograde neuronal transport. We therefore hypothesize that EHV-1 follows the same latency pathways as its close relative human pathogen Varicella Zoster Virus

    Cisplatin plus oral etoposide (EoP) combination is more effective than paclitaxel in patients with advanced breast cancer pretreated with anthracyclines: a randomised phase III trial of Turkish Oncology Group

    Get PDF
    Our objective was to determine whether oral etoposide and cisplatin combination (EoP) is superior to paclitaxel in the treatment of advanced breast cancer (ABC) patients pretreated with anthracyclines. From December 1997 to August 2003, 201 patients were randomised, 100 to EoP and 101 to paclitaxel arms. Four patients in each arm were ineligible. The doses of etoposide and cisplatin were 50 mg p.o. twice a day for 7 days and 70 mg m−2 intravenously (i.v.) on day 1, respectively, and it was 175 mg m−2 on day 1 for paclitaxel. Both treatments were repeated every 3 weeks. A median of four cycles of study treatment was given in both arms. The response rate obtained in the EoP arm was significantly higher (36.3 vs 22.2%; P=0.038). Median response duration was longer for the EoP arm (7 vs 4 months) (P=0.132). Also, time to progression was significantly in favour of the EoP arm (5.5 vs 3.9 months; P=0.003). Median overall survival was again significantly longer in the EoP arm (14 vs 9.5 months; P=0.039). Toxicity profile of both groups was similar. Two patients in each arm were lost due to febrile neutropenia. The observed activity and acceptable toxicity of EoP endorses the employment of this combination in the treatment of ABC following anthracyclines

    Wnt signaling in triple negative breast cancer is associated with metastasis

    Get PDF
    Background Triple Negative subset of (TN) Breast Cancers (BC), a close associate of the basal-like subtype (with limited discordance) is an aggressive form of the disease which convey unpredictable, and poor prognosis due to limited treatment options and lack of proven effective targeted therapies. Methods We conducted an expression study of 240 formalin-fixed, paraffin-embedded (FFPE) primary biopsies from two cohorts, including 130 TN tumors, to identify molecular mechanisms of TN disease. Results The annotation of differentially expressed genes in TN tumors contained an overrepresentation of canonical Wnt signaling components in our cohort and others. These observations were supported by upregulation of experimentally induced oncogenic Wnt/β-catenin genes in TN tumors, recapitulated using targets induced by Wnt3A. A functional blockade of Wnt/β-catenin pathway by either a pharmacological Wnt-antagonist, WntC59, sulidac sulfide, or β-catenin (functional read out of Wnt/β-catenin pathway) SiRNA mediated genetic manipulation demonstrated that a functional perturbation of the pathway is causal to the metastasis- associated phenotypes including fibronectin-directed migration, F-actin organization, and invasion in TNBC cells. A classifier, trained on microarray data from β-catenin transfected mammary cells, identified a disproportionate number of TNBC breast tumors as compared to other breast cancer subtypes in a meta-analysis of 11 studies and 1,878 breast cancer patients, including the two cohorts published here. Patients identified by the Wnt/β-catenin classifier had a greater risk of lung and brain, but not bone metastases. Conclusion These data implicate transcriptional Wnt signaling as a hallmark of TNBC disease associated with specific metastatic pathways

    Histopathologic Findings Following Experimental Equine Herpesvirus 1 Infection of Horses

    Get PDF
    Histopathological differences in horses infected with equine herpesvirus type 1 (EHV-1) of differing neuropathogenic potential [wild-type (Ab4), polymerase mutant (Ab4 N752), EHV-1/4 gD mutant (Ab4 gD4)] were evaluated to examine the impact of viral factors on clinical disease, tissue tropism and pathology. Three of 8 Ab4 infected horses developed Equine Herpesvirus Myeloencephalopathy (EHM) requiring euthanasia of 2 horses on day 9 post-infection. None of the other horses showed neurologic signs and all remaining animals were sacrificed 10 weeks post-infection. EHM horses had lymphohistiocytic vasculitis and lymphocytic infiltrates in the lungs, spinal cord, endometrium and eyes. EHV-1 antigen was detected within the eyes and spinal cord. In 3/6 of the remaining Ab4 infected horses, 4/9 Ab4 N752 infected horses, and 8/8 Ab4 gD4 infected horses, choroiditis was observed. All males had interstitial lymphoplasmacytic and/or histiocytic orchitis and EHV-1 antigen was detected. In conclusion, only animals sacrificed due to EHM developed overt vasculitis in the CNS and the eye. Mild choroiditis persisted in many animals and appeared to be more common in Ab4 gD4 infected animals. Finally, we report infiltrates and changes in the reproductive organs of all males associated with EHV-1 antigen. While the exact significance of these changes is unclear, these findings raise concern for long-term effects on reproduction and prolonged shedding of virus through semen

    Social and content hybrid image recommender system for mobile social networks

    Get PDF
    One of the advantages of social networks is the possibility to socialize and personalize the content created or shared by the users. In mobile social networks, where the devices have limited capabilities in terms of screen size and computing power, Multimedia Recommender Systems help to present the most relevant content to the users, depending on their tastes, relationships and profile. Previous recommender systems are not able to cope with the uncertainty of automated tagging and are knowledge domain dependant. In addition, the instantiation of a recommender in this domain should cope with problems arising from the collaborative filtering inherent nature (cold start, banana problem, large number of users to run, etc.). The solution presented in this paper addresses the abovementioned problems by proposing a hybrid image recommender system, which combines collaborative filtering (social techniques) with content-based techniques, leaving the user the liberty to give these processes a personal weight. It takes into account aesthetics and the formal characteristics of the images to overcome the problems of current techniques, improving the performance of existing systems to create a mobile social networks recommender with a high degree of adaptation to any kind of user
    • …
    corecore