504 research outputs found

    Electrocardiogram derived respiration during sleep

    Full text link
    The aim of this study was quantify the ECG Derived Respiration (EDR) in order to extend the capabilities of ECG-based sleep analysis. We examined our results in normal subjects and in patients with Obstructive Sleep Apnea Syndrome (OSAS) or Central Sleep Apnea. Lead 2 ECG and three measures of respiration (thorax and abdominal effort, and oronasal flow signal) were recorded during sleep studies of 12 normal and 12 OSAS patients. Three parameters, the R-wave amplitude (RWA), R-wave duration (RWD), and QRS area, were extracted from the ECG signal, resulting in time series that displayed a behavior similar to that of the respiration signals. EDR frequency was correlated with directly measured respiratory frequency, and averaged over all subjects. The peak-to-peak value of the EDR signals during the apnea event was compared to the average peak-to-peak of the sleep stage, containing the apnea. 1

    Method and apparatus for magnetoresistive monitoring of analytes in flow streams

    Get PDF
    Method and apparatus for manipulating and monitoring analyte flowing in fluid streams. A giant magnetoresistive sensor has an array of sensing elements that produce electrical output signals which vary in dependence on changes in the magnetic field proximate the sensing elements. The analyte is included in a stream, such that the stream has a magnetic property which is dependent on the concentration and distribution on the analyte therein. The stream is flowed past the giant magnetoresistive sensor and in sufficiently close proximity to cause the magnetic properties of the stream to produce electrical output signals. The electrical output signals are monitored as an indicator of analyte concentration or distribution in the stream flowing past the GMR sensor. Changes in the magnetic field produced by the background stream are introduced by analyte molecules, whose presence in the flow past the GMR will effect the output reading

    Robust Signal Processing in Living Cells

    Get PDF
    Cellular signaling networks have evolved an astonishing ability to function reliably and with high fidelity in uncertain environments. A crucial prerequisite for the high precision exhibited by many signaling circuits is their ability to keep the concentrations of active signaling compounds within tightly defined bounds, despite strong stochastic fluctuations in copy numbers and other detrimental influences. Based on a simple mathematical formalism, we identify topological organizing principles that facilitate such robust control of intracellular concentrations in the face of multifarious perturbations. Our framework allows us to judge whether a multiple-input-multiple-output reaction network is robust against large perturbations of network parameters and enables the predictive design of perfectly robust synthetic network architectures. Utilizing the Escherichia coli chemotaxis pathway as a hallmark example, we provide experimental evidence that our framework indeed allows us to unravel the topological organization of robust signaling. We demonstrate that the specific organization of the pathway allows the system to maintain global concentration robustness of the diffusible response regulator CheY with respect to several dominant perturbations. Our framework provides a counterpoint to the hypothesis that cellular function relies on an extensive machinery to fine-tune or control intracellular parameters. Rather, we suggest that for a large class of perturbations, there exists an appropriate topology that renders the network output invariant to the respective perturbations

    Rules for biological regulation based on error minimization

    Full text link
    The control of gene expression involves complex mechanisms that show large variation in design. For example, genes can be turned on either by the binding of an activator (positive control) or the unbinding of a repressor (negative control). What determines the choice of mode of control for each gene? This study proposes rules for gene regulation based on the assumption that free regulatory sites are exposed to nonspecific binding errors, whereas sites bound to their cognate regulators are protected from errors. Hence, the selected mechanisms keep the sites bound to their designated regulators for most of the time, thus minimizing fitness-reducing errors. This offers an explanation of the empirically demonstrated Savageau demand rule: Genes that are needed often in the natural environment tend to be regulated by activators, and rarely needed genes tend to be regulated by repressors; in both cases, sites are bound for most of the time, and errors are minimized. The fitness advantage of error minimization appears to be readily selectable. The present approach can also generate rules for multi-regulator systems. The error-minimization framework raises several experimentally testable hypotheses. It may also apply to other biological regulation systems, such as those involving protein-protein interactions.Comment: biological physics, complex networks, systems biology, transcriptional regulation http://www.weizmann.ac.il/complex/tlusty/papers/PNAS2006.pdf http://www.pnas.org/content/103/11/3999.ful

    Microelectromagnetic ferrofluid-based actuator

    Get PDF
    Computer simulations were used to investigate the performance of a microscale ferrofluid-based magnetic actuator developed for liquid dispensing in microfluidic channels. The actuation was based on the movement of a ferrofluid plug in a magnetic field gradient generated by on-chip effectively infinite parallel conductors. The movement, positioning, and retaining of ferrofluid plugs with different lengths at various locations along a microfluidic channel were investigated for two cases. In case (a), the magnetic field gradient was generated by a single conductor; when the ferrofluid reached its equilibrium position, the current was switched off and the nearest neighbor conductor was energized. A similar, consecutive on/off current switching was performed for case (b), where a set of conductors was energized simultaneously

    Electrical transport in amorphous semiconducting AlMgB14 films

    Get PDF
    The electrical transport properties of semiconducting AlMgB14films deposited at room temperature and 573K are reported in this letter. The as-deposited films are amorphous, and they exhibit high n-type electrical conductivity, which is believed to stem from the conduction electrons donated by Al, Mg, and/or Fe impurities in these films. The film deposited at 573K is less conductive than the room-temperature-deposited film. This is attributed to the nature of donor or trap states in the band gap related to the different deposition temperatures

    Under-reporting bicycle accidents to police in the COST TU1101 international survey: Cross-country comparisons and associated factors

    Get PDF
    Police crash reports are often the main source for official data in many countries. However, with the exception of fatal crashes, crashes are often underreported in a biased manner. Consequently, the countermeasures adopted according to them may be inefficient. In the case of bicycle crashes, this bias is most acute and it probably varies across countries, with some of them being more prone to reporting accidents to police than others. Assessing if this bias occurs and the size of it can be of great importance for evaluating the risks associated with bicycling. This study utilized data collected in the COST TU1101 action “Towards safer bicycling through optimization of bicycle helmets and usage”. The data came from an online survey that included questions related to bicyclists' attitudes, behaviour, cycling habits, accidents, and patterns of use of helmets. The survey was filled by 8655 bicyclists from 30 different countries. After applying various exclusion factors, 7015 questionnaires filled by adult cyclists from 17 countries, each with at least 100 valid responses, remained in our sample. The results showed that across all countries, an average of only 10% of all crashes were reported to the police, with a wide range among countries: from a minimum of 0.0% (Israel) and 2.6% (Croatia) to a maximum of a 35.0% (Germany). Some factors associated with the reporting levels were type of crash, type of vehicle involved, and injury severity. No relation was found between the likelihood of reporting and the cyclist's gender, age, educational level, marital status, being a parent, use of helmet, and type of bicycle. The significant under-reporting – including injury crashes that do not lead to hospitalization – justifies the use of self-report survey data for assessment of bicycling crash patterns as they relate to (1) crash risk issues such as location, infrastructure, cyclists' characteristics, and use of helmet and (2) strategic approaches to bicycle crash prevention and injury reduction.Fil: Shinar, D.. Ben Gurion University of the Negev; IsraelFil: Valero Mora, Pedro. Universidad de Valencia; EspañaFil: van Strijp Houtenbos, M.. Institute For Road Safety Research; PaĂ­ses BajosFil: Haworth, N.. Queensland University of Technology; AustraliaFil: Schramm, A.. Queensland University of Technology; AustraliaFil: de Bruyne, G.. Universiteit Antwerp; BĂ©lgicaFil: Cavallo, V.. No especifĂ­ca;Fil: Chliaoutakis, J.. No especifĂ­ca;Fil: Pereira Dias, Joao. Instituto Superior Tecnico; PortugalFil: Ferraro, Ottavia Eleonora. Universita Degli Studi Di Pavia; ItaliaFil: Fyhri, Aslak. No especifĂ­ca;Fil: Sajatovic, Anika Hursa. No especifĂ­ca;Fil: Kuklane, Kalev. Lund University; SueciaFil: Ledesma, Ruben Daniel. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mar del Plata. Instituto de PsicologĂ­a BĂĄsica, Aplicada y TecnologĂ­a. Universidad Nacional de Mar del Plata. Facultad de PsicologĂ­a. Instituto de PsicologĂ­a BĂĄsica, Aplicada y TecnologĂ­a.; ArgentinaFil: CalvĂ© Mascarell, Oscar. Ben Gurion University of the Negev; IsraelFil: Morandi, A.. Universita Degli Studi Di Pavia; ItaliaFil: Muser, Markus. No especifĂ­ca;Fil: Otte, Diettmar. No especifĂ­ca;Fil: Papadakaki, M.. No especifĂ­ca;Fil: SanmartĂ­n, J.. Universidad de Valencia; EspañaFil: Dulf, D.. No especifĂ­ca;Fil: Saplioglu, M.. No especifĂ­ca;Fil: Tzamalouka, Georgia. No especifĂ­ca

    Robustness in Glyoxylate Bypass Regulation

    Get PDF
    The glyoxylate bypass allows Escherichia coli to grow on carbon sources with only two carbons by bypassing the loss of carbons as CO2 in the tricarboxylic acid cycle. The flux toward this bypass is regulated by the phosphorylation of the enzyme isocitrate dehydrogenase (IDH) by a bifunctional kinase–phosphatase called IDHKP. In this system, IDH activity has been found to be remarkably robust with respect to wide variations in the total IDH protein concentration. Here, we examine possible mechanisms to explain this robustness. Explanations in which IDHKP works simultaneously as a first-order kinase and as a zero-order phosphatase with a single IDH binding site are found to be inconsistent with robustness. Instead, we suggest a robust mechanism where both substrates bind the bifunctional enzyme to form a ternary complex

    Interobserver Agreement in the Diagnosis of Stroke Type

    Get PDF
    Interobserver Agreement is Essential to the Reliability of Clinical Data from Cooperative Studies and Provides the Foundation for Applying Research Results to Clinical Practice. in the Stroke Data Bank, a Large Cooperative Study of Stroke, We Sought to Establish the Reliability of a Key Aspect of Stroke Diagnosis: The Mechanism of Stroke. Seventeen Patients Were Evaluated by Six Neurologists. Interobserver Agreement Was Measured When Diagnosis Was based on Patient History and Neurologic Examination Only, as Well as When It Was based on Results of a Completed Workup, Including a Computed Tomographic Scan. Initial Clinical Impressions, based Solely on History and One Neurologic Examination, Were Fairly Reliable in Establishing the Mechanism of Stroke (Ie, Distinguishing among Infarcts, Subarachnoid Hemorrhages, and Parenchymatous Hemorrhages). Classification into One of Nine Stroke Subtypes Was Substantially Reliable When Diagnoses Were based on a Completed Workup. Compared with Previous Findings for the Same Physicians and Patients, the Diagnosis of Stroke Type Was Generally More Reliable Than Individual Signs and Symptoms. These Results Suggest that Multicentered Studies Can Rely on the Independent Diagnostic Choices of Several Physicians When Common Definitions Are Employed and Data from a Completed Workup Are Available. Furthermore, Reliability May Be Less for Individual Measurements Such as Signs or Symptoms Than for More-Complex Judgments Such as Diagnoses. © 1986, American Medical Association. All Rights Reserved

    Strong negative self regulation of Prokaryotic transcription factors increases the intrinsic noise of protein expression

    Get PDF
    Background Many prokaryotic transcription factors repress their own transcription. It is often asserted that such regulation enables a cell to homeostatically maintain protein abundance. We explore the role of negative self regulation of transcription in regulating the variability of protein abundance using a variety of stochastic modeling techniques. Results We undertake a novel analysis of a classic model for negative self regulation. We demonstrate that, with standard approximations, protein variance relative to its mean should be independent of repressor strength in a physiological range. Consequently, in that range, the coefficient of variation would increase with repressor strength. However, stochastic computer simulations demonstrate that there is a greater increase in noise associated with strong repressors than predicted by theory. The discrepancies between the mathematical analysis and computer simulations arise because with strong repressors the approximation that leads to Michaelis-Menten-like hyperbolic repression terms ceases to be valid. Because we observe that strong negative feedback increases variability and so is unlikely to be a mechanism for noise control, we suggest instead that negative feedback is evolutionarily favoured because it allows the cell to minimize mRNA usage. To test this, we used in silico evolution to demonstrate that while negative feedback can achieve only a modest improvement in protein noise reduction compared with the unregulated system, it can achieve good improvement in protein response times and very substantial improvement in reducing mRNA levels. Conclusions Strong negative self regulation of transcription may not always be a mechanism for homeostatic control of protein abundance, but instead might be evolutionarily favoured as a mechanism to limit the use of mRNA. The use of hyperbolic terms derived from quasi-steady-state approximation should also be avoided in the analysis of stochastic models with strong repressors
    • 

    corecore