367 research outputs found

    The role of internet resources in health decision-making::a qualitative study

    Get PDF
    Objective: Internet resources remain important for health information and advice but their specific role in decision-making is understudied, often assumed and remains unclear. In this article, we examine the different ways in which internet resources play a role in health decision-making within the context of distributed decision-making. Methods: We conducted semi-structured interviews with thirty-seven people in the United Kingdom who reported using the internet in relation to decision-making and represented a range of long and short-term health conditions. The interviews focused on decision-making activities across different settings and in relation to different stakeholders to understand how internet resources play a role in these activities. We carried out a thematic analysis of the interviews. Results: We identified three main ways in which internet resources played a role in health decision-making. A supportive role (as a decision crutch), a stimulating role (as a decision initiator), and an interactional role (impacting on the doctor–patient relationship). These three roles spanned different resources and illustrated how the decision-making process can be impacted by the encounters people have with technology – specifically internet based health resources, in different ways and at different time points. Conclusions: Examining health decisions in respect to internet resources highlights the complex and distributed nature of decision-making alongside the complexity of online health information sourcing. We discuss the role of internet resources in relation to the increasing importance of online personal experiences and their relevance within shared decision-making

    Hadamard Products of Product Operators and the Design of Gradient-Diffusion Experiments for Simulating Decoherence by NMR Spectroscopy

    Full text link
    An extension of the product operator formalism of NMR is introduced, which uses the Hadamard matrix product to describe many simple spin 1/2 relaxation processes. The utility of this formalism is illustrated by deriving NMR gradient-diffusion experiments to simulate several decoherence models of interest in quantum information processing, along with their Lindblad and Kraus representations. Gradient-diffusion experiments are also described for several more complex forms of decoherence, including the well-known collective isotropic model. Finally, it is shown that the Hadamard formalism gives a concise representation of decoherence with arbitrary correlations among the fluctuating fields at the different spins involved, and that this can be applied to both decoherence (T2) as well as nonadiabatic relaxation (T1) processes.Comment: RevTeX, 11 page single-spaced preprint, no figures. Version two has new title, abstract, introduction & conclusions, while the main body of the text remains substantially the sam

    Mechanisms of proton-proton inelastic cross-section growth in multi-peripheral model within the framework of perturbation theory. Part 2

    Full text link
    We demonstrate a new technique for calculating proton-proton inelastic cross-section, which allows one by application of the Laplace' method replace the integrand in the integral for the scattering amplitude in the vicinity of the maximum point by expression of Gaussian type. This in turn, allows one to overcome the computational difficulties for the calculation of the integrals expressing the cross section to sufficiently large numbers of particles. We have managed to overcome these problems in calculating the proton-proton inelastic cross-section for production (n \le 8) number of secondary particles in within the framework of \phi^3 model. As the result the obtained dependence of inelastic cross-section and total scattering cross-section on the energy \sqrt{s} are qualitative agrees with the experimental data. Such description of total cross-section behavior differs considerably from existing now description, where reggeons exchange with the intercept greater than unity is considered.Comment: 11 pages, 10 figures (v3: some inaccuracies corrected

    Simulation of the short-range order in disordered cubic titanium monoxide TiO1.0

    Full text link
    A model of the atomic structure with the short-range order in the vacancy distribution for the disordered cubic phase of titanium monoxide TiO1.0 has been proposed. The effect of the short-range order on the electronic structure and the stability of the compound has been studied by the supercell method within the DFT-GGA approximation with the use of pseudopotentials. It has been established that the appearance of the short-range order considerably decreases the total energy. The decrease in the energy is comparable with the energy gain during the ordering of the vacancies according to the type of monoclinic superstructure Ti5O5 to the long-range order parameter η = 0.7. It has been shown that the discrepancies between the theoretical and experimental electronic spectra of titanium monoxide can be explained by allowance for the short range order. © 2013 Pleiades Publishing, Ltd

    Quantum Codes for Controlling Coherent Evolution

    Get PDF
    Control over spin dynamics has been obtained in NMR via coherent averaging, which is implemented through a sequence of RF pulses, and via quantum codes which can protect against incoherent evolution. Here, we discuss the design and implementation of quantum codes to protect against coherent evolution. A detailed example is given of a quantum code for protecting two data qubits from evolution under a weak coupling (Ising) term in the Hamiltonian, using an ``isolated'' ancilla which does not evolve on the experimental time scale. The code is realized in a three-spin system by liquid-state NMR spectroscopy on 13C-labelled alanine, and tested for two initial states. It is also shown that for coherent evolution and isolated ancillae, codes exist that do not require the ancillae to initially be in a (pseudo-)pure state. Finally, it is shown that even with non-isolated ancillae quantum codes exist which can protect against evolution under weak coupling. An example is presented for a six qubit code that protects two data spins to first order.Comment: Reformatted single spaced with figures incorporated into text (18 pages, 6 figures, PDF only, submitted to J. Chem. Phys.

    Spintronics and Quantum Dots for Quantum Computing and Quantum Communication

    Get PDF
    Control over electron-spin states, such as coherent manipulation, filtering and measurement promises access to new technologies in conventional as well as in quantum computation and quantum communication. We review our proposal of using electron spins in quantum confined structures as qubits and discuss the requirements for implementing a quantum computer. We describe several realizations of one- and two-qubit gates and of the read-in and read-out tasks. We discuss recently proposed schemes for using a single quantum dot as spin-filter and spin-memory device. Considering electronic EPR pairs needed for quantum communication we show that their spin entanglement can be detected in mesoscopic transport measurements using metallic as well as superconducting leads attached to the dots.Comment: Prepared for Fortschritte der Physik special issue, Experimental Proposals for Quantum Computation. 15 pages, 5 figures; typos corrected, references adde

    Is mindfulness Buddhist? (and why it matters).

    Get PDF
    Modern exponents of mindfulness meditation promote the therapeutic effects of "bare attention"--a sort of non-judgmental, non-discursive attending to the moment-to-moment flow of consciousness. This approach to Buddhist meditation can be traced to Burmese Buddhist reform movements of the first half of the 20th century, and is arguably at odds with more traditional Theravāda Buddhist doctrine and meditative practices. But the cultivation of present-centered awareness is not without precedent in Buddhist history; similar innovations arose in medieval Chinese Zen (Chan) and Tibetan Dzogchen. These movements have several things in common. In each case the reforms were, in part, attempts to render Buddhist practice and insight accessible to laypersons unfamiliar with Buddhist philosophy and/or unwilling to adopt a renunciatory lifestyle. In addition, these movements all promised astonishingly quick results. And finally, the innovations in practice were met with suspicion and criticism from traditional Buddhist quarters. Those interested in the therapeutic effects of mindfulness and bare attention are often not aware of the existence, much less the content, of the controversies surrounding these practices in Asian Buddhist history

    A Study of Quantum Error Correction by Geometric Algebra and Liquid-State NMR Spectroscopy

    Get PDF
    Quantum error correcting codes enable the information contained in a quantum state to be protected from decoherence due to external perturbations. Applied to NMR, quantum coding does not alter normal relaxation, but rather converts the state of a ``data'' spin into multiple quantum coherences involving additional ancilla spins. These multiple quantum coherences relax at differing rates, thus permitting the original state of the data to be approximately reconstructed by mixing them together in an appropriate fashion. This paper describes the operation of a simple, three-bit quantum code in the product operator formalism, and uses geometric algebra methods to obtain the error-corrected decay curve in the presence of arbitrary correlations in the external random fields. These predictions are confirmed in both the totally correlated and uncorrelated cases by liquid-state NMR experiments on 13C-labeled alanine, using gradient-diffusion methods to implement these idealized decoherence models. Quantum error correction in weakly polarized systems requires that the ancilla spins be prepared in a pseudo-pure state relative to the data spin, which entails a loss of signal that exceeds any potential gain through error correction. Nevertheless, this study shows that quantum coding can be used to validate theoretical decoherence mechanisms, and to provide detailed information on correlations in the underlying NMR relaxation dynamics.Comment: 33 pages plus 6 figures, LaTeX article class with amsmath & graphicx package

    Financial Aspects of Technological Concept for Energy Efficiency Enhancement during Stripper Wells Development in Tomsk Region

    Get PDF
    The issue of operating costs cutting in terms of falling oil prices on the world market actualizes the challenge to find technological solutions to reduce electricity consumption during well operation. This is especially important for stripped-wells of small deposits in Tomsk region. The correlation analysis between the cost of oil production, electricity, heat and fuel consumption during the extraction of one ton of oil allowed the authors to focus on the financial aspect of such technological solutions like periodic well operation in the Shinginskoye field as well as to recommend the application of this method at the other fields in Tomsk region
    corecore