Control over electron-spin states, such as coherent manipulation, filtering
and measurement promises access to new technologies in conventional as well as
in quantum computation and quantum communication. We review our proposal of
using electron spins in quantum confined structures as qubits and discuss the
requirements for implementing a quantum computer. We describe several
realizations of one- and two-qubit gates and of the read-in and read-out tasks.
We discuss recently proposed schemes for using a single quantum dot as
spin-filter and spin-memory device. Considering electronic EPR pairs needed for
quantum communication we show that their spin entanglement can be detected in
mesoscopic transport measurements using metallic as well as superconducting
leads attached to the dots.Comment: Prepared for Fortschritte der Physik special issue, Experimental
Proposals for Quantum Computation. 15 pages, 5 figures; typos corrected,
references adde