505 research outputs found

    A Benefit-Cost Assessment of New Vehicle Technologies and Fuel Economy in the U.S. Market

    Get PDF
    Increasingly stringent fuel economy and emissions regulations alongside efforts to reduce oil dependence have accelerated the global deployment of advanced vehicle technologies. In recent years, original equipment manufacturers (OEMs) and consumers have generally been successful in mutually deploying cleaner vehicle options with little sacrifice in cost, performance or overall utility. Projections regarding the challenges and impacts associated with compliance with mid- and long-term targets in the U.S., however, incur much greater uncertainty. The share of existing new vehicles that is expected to comply with future regulations, for example, falls below 10% by 2020. This article explores advanced technologies that result in reduced fuel consumption and emissions that are commercially available in 2014 Model Year compact and midsize passenger cars. A review of the recent research literature and publicly available cost and technical specification data addressing correlations between incremental cost and fuel economy is presented. This analysis reveals that a 10% improvement in the sales-weighted average fuel economy of passenger cars has been achieved between 2011 and 2014 at costs that are at or below levels anticipated by the regulations by means of reductions in weight, friction, and drag; advancements in internal combustion efficiency; turbocharging combined with engine downsizing; transmission upgrades; and the growth of hybrids. Benefit-cost analyses performed on best-selling models in the selected classifications reveal that consumers thus far are not substantially incentivized to purchase fuel economy. Under baseline conditions, benefit-cost ratios are above a breakeven value of unity for only 6 of 28 models employing improved fuel-economy technologies. Sales-weighted data indicate that the ‘‘average’’ consumer that elected to invest in greater fuel economy spent 1490torealizea17.31490 to realize a 17.3% improvement in fuel economy, equating to estimated savings of 1070. Thus savings were, on average, insufficient to cover technology costs in the baseline scenario. However, a sensitivity analysis reveals that a majority of new technologies become financially attractive to consumers when average fuel prices exceed $5.60/gallon, or when annual miles traveled exceed 16,400. The article concludes with techno-economic implications of the research on future fuel economy regulations for stakeholders. In general, the additional cost consumers incur in exchange for a given level of fuel economy improvement in the coming years will need to be steadily reduced compared to current levels to ensure that the expected benefits of fuel savings are financially warranted

    Preliminary catalog of pictures taken on the lunar surface during the Apollo 15 mission

    Get PDF
    Catalog of all pictures taken from lunar module or lunar surface during Apollo 15 missio

    UNC2025, a MERTK Small-Molecule Inhibitor, Is Therapeutically Effective Alone and in Combination with Methotrexate in Leukemia Models

    Get PDF
    MERTK tyrosine kinase is ectopically expressed in 30–50% of acute lymphoblastic leukemias (ALL) and over 80% of acute myeloid leukemias (AML) and is a potential therapeutic target. Here, we evaluated the utility of UNC2025, a MERTK tyrosine kinase inhibitor, for treatment of acute leukemia

    Blocking airway mucous cell metaplasia by inhibiting EGFR antiapoptosis and IL-13 transdifferentiation signals

    Get PDF
    Epithelial hyperplasia and metaplasia are common features of inflammatory and neoplastic disease, but the basis for the altered epithelial phenotype is often uncertain. Here we show that long-term ciliated cell hyperplasia coincides with mucous (goblet) cell metaplasia after respiratory viral clearance in mouse airways. This chronic switch in epithelial behavior exhibits genetic susceptibility and depends on persistent activation of EGFR signaling to PI3K that prevents apoptosis of ciliated cells and on IL-13 signaling that promotes transdifferentiation of ciliated to goblet cells. Thus, EGFR blockade (using an irreversible EGFR kinase inhibitor designated EKB-569) prevents virus-induced increases in ciliated and goblet cells whereas IL-13 blockade (using s-IL-13Rα2-Fc) exacerbates ciliated cell hyperplasia but still inhibits goblet cell metaplasia. The distinct effects of EGFR and IL-13 inhibitors after viral reprogramming suggest that these combined therapeutic strategies may also correct epithelial architecture in the setting of airway inflammatory disorders characterized by a similar pattern of chronic EGFR activation, IL-13 expression, and ciliated-to-goblet cell metaplasia

    Metabolic reprogramming ensures cancer cell survival despite oncogenic signaling blockade

    Get PDF
    There is limited knowledge about the metabolic reprogramming induced by cancer therapies, and how this contributes to therapeutic resistance. Here we show that although inhibition of PI3K-AKT-mTOR signaling markedly decreased glycolysis and restrained tumor growth, these signaling and metabolic restrictions triggered autophagy, which supplied the metabolites required for the maintenance of mitochondrial respiration and redox homeostasis. Specifically, we found that survival of cancer cells was critically dependent on phospholipase A2 (PLA2) to mobilize lysophospholipids and free fatty acids to sustain fatty acid oxidation and oxidative phosphorylation. Consistent with this, we observed significantly increased lipid droplets, with subsequent mobilization to mitochondria. These changes were abrogated in cells deficient for the essential autophagy gene, ATG5. Accordingly, inhibition of PLA2 significantly decreased lipid droplets, decreased oxidative phosphorylation and increased apoptosis. Together, these results describe how treatment-induced autophagy provides nutrients for cancer cell survival and identifies novel co-treatment strategies to override this survival advantage

    Sustained release formulation of an anti-tuberculosis drug based on para-amino salicylic acid-zinc layered hydroxide nanocomposite

    Get PDF
    Background: Tuberculosis (TB), is caused by the bacteria, Mycobacterium tuberculosis and its a threat to humans since centuries. Depending on the type of TB, its treatment can last for 6-24 months which is a major cause for patients non-compliance and treatment failure. Many adverse effects are associated with the currently available TB medicines, and there has been no new anti-tuberculosis drug on the market for more than 50 year, as the drug development is very lengthy and budget consuming process.Development of the biocompatible nano drug delivery systems with the ability to minimize the side effects of the drugs, protection of the drug from enzymatic degradation. And most importantly the drug delivery systems which can deliver the drug at target site would increase the therapeutic efficacy. Nanovehicles with their tendency to release the drug in a sustained manner would result in the bioavalibilty of the drugs in the body for a longer period of time and this would reduce the dosing frequency in drug administration. The biocompatible nanovehicles with the properties like sustained release of drug of the target site, protection of the drug from physio-chemical degradation, reduction in dosing frequency, and prolong bioavailability of drug in the body would result in the shortening of the treatment duration. All of these factors would improve the patient compliance with chemotherapy of TB.Result: An anti-tuberculosis drug, 4-amino salicylic acid (4-ASA) was successfully intercalated into the interlamellae of zinc layered hydroxide (ZLH) via direct reaction with zinc oxide suspension. The X-ray diffraction patterns and FTIR analyses indicate that the molecule was successfully intercalated into the ZLH interlayer space with an average basal spacing of 24 Å. Furthermore, TGA and DTG results show that the drug 4-ASA is stabilized in the interlayers by electrostatic interaction. The release of 4-ASA from the nanocomposite was found to be in a sustained manner. The nanocomposite treated with normal 3T3 cells shows it reduces cell viability in a dose- and time-dependent manner.Conclusions: Sustained release formulation of the nanocomposite, 4-ASA intercalated into zinc layered hydroxides, with its ease of preparation, sustained release of the active and less-toxic to the cell is a step forward for a more patient-friendly chemotherapy of Tuberculosis

    Δ40 Isoform of p53 Controls β-Cell Proliferation and Glucose Homeostasis in Mice

    Get PDF
    Objective: Investigating the dynamics of pancreatic β\beta-cell mass is critical for developing strategies to treat both type 1 and type 2 diabetes. p53, a key regulator of the cell cycle and apoptosis, has mostly been a focus of investigation as a tumor suppressor. Although p53 alternative transcripts can modulate p53 activity, their functions are not fully understood. We hypothesized that β\beta-cell proliferation and glucose homeostasis were controlled by Δ\Delta40p53, a p53 isoform lacking the transactivation domain of the full-length protein that modulates total p53 activity and regulates organ size and life span in mice. Research Design and Methods: We phenotyped metabolic parameters in Δ\Delta40p53 transgenic (p44tg) mice and used quantitative RT-PCR, Western blotting, and immunohistochemistry to examine β\beta-cell proliferation. Results: Transgenic mice with an ectopic p53 gene encoding Δ\Delta40p53 developed hypoinsulinemia and glucose intolerance by 3 months of age, which worsened in older mice and led to overt diabetes and premature death from \sim14 months of age. Consistent with a dramatic decrease in β\beta-cell mass and reduced β\beta-cell proliferation, lower expression of cyclin D2 and pancreatic duodenal homeobox-1, two key regulators of proliferation, was observed, whereas expression of the cell cycle inhibitor p21, a p53 target gene, was increased. Conclusions: These data indicate a significant and novel role for Δ\Delta40p53 in β\beta-cell proliferation with implications for the development of age-dependent diabetes

    POLETOWN NEIGHBORHOOD COUNCIL, a voluntary unincorporated association

    Get PDF
    Corporation as a site for construction of an assembly plant. The plaintiffs, a neighborhood association and several individual residents of the affected area, brought suit in Wayne Circuit Court to challenge the project on a number of grounds, not all of which have been argued to this Court. Defendants' motions for summary judgment were denied pending trial on a single question of fact: whether, under 1980 PA 87; M.C.L. § 213.51 et seq ; M.S.A. § 8.265(1) et seq, the city abused its discretion in determining that condemnation of plaintiffs' property was necessary to complete the project
    corecore