290 research outputs found
Coherent control at its most fundamental: CEP-dependent electron localization in photodissoziation of a H2+ molecular ion beam target
Measurements and calculations of the absolute carrier-envelope phase (CEP)
effects in the photodissociation of the simplest molecule, H2+, with a 4.5-fs
Ti:Sapphire laser pulse at intensities up to (4 +- 2)x10^14 Watt/cm^2 are
presented. Localization of the electron with respect to the two nuclei (during
the dissociation process) is controlled via the CEP of the ultra-short laser
pulses. In contrast to previous CEP-dependent experiments with neutral
molecules, the dissociation of the molecular ions is not preceded by a
photoionization process, which strongly influences the CEP dependence.
Kinematically complete data is obtained by time- and position-resolved
coincidence detection. The phase dependence is determined by a single-shot
phase measurement correlated to the detection of the dissoziation fragments.
The experimental results show quantitative agreement with ab inito 3D-TDSE
calculations that include nuclear vibration and rotation.Comment: new version includes minore changes and adding the supp_material.pd
Recommended from our members
Wireless Luminescence Integrated Sensors (WLIS)
The goal of this project was the development of a family of wireless, single-chip, luminescence-sensing devices to solve a number of difficult distributed measurement problems in areas ranging from environmental monitoring and assessment to high-throughput screening of combinatorial chemistry libraries. These wireless luminescence integrated sensors (WLIS) consist of a microluminometer, wireless data transmitter, and RF power input circuit all realized in a standard integrated circuit (IC) process with genetically engineered, whole-cell, bioluminescent bioreporters encapsulated and deposited on the IC. The end product is a family of compact, low-power, rugged, low-cost sensors. As part of this program they developed an integrated photodiode/signal-processing scheme with an rms noise level of 175 electrons/second for a 13-minute integration time, and a quantum efficiency of 66% at the 490-nm bioluminescent wavelength. this performance provided a detection limit of < 1000 photons/second. Although sol-gel has previously been used to encapsulate yeast cells, the reaction conditions necessary for polymerization (primarily low pH) have beforehand proven too harsh for bacterial cell immobilizations. Utilizing sonication methods, they have were able to initiate polymerization under pH conditions conductive to cell survival. both a toluene bioreporter (Pseudomonas putida TVA8) and a naphthalene bioreporter (Pseudomonas fluorescens HK44) were successfully encapsulated in sol-gel and shown to produce a fairly significant bioluminescent response. In addition to the previously developed naphthalene- and toluene-sensitive bioreporters, they developed a yeast-based xenoestrogen reporter. This technology has been licensed by Micro Systems Technologies, a startup company in Dayton, Ohio for applications in environmental containments monitoring, and for detecting weapons of mass destruction (i.e. homeland security)
Recommended from our members
Bioluminescent reporters for catabolic gene expression and pollutant bioavailability
The application of visualized catabolic nah-gene expression using a luxCDABE gene fusion provides a valuable method to measure quantitatively and specifically naphthalene and salicylate bioavailability. It has been demonstrated that the physiological state of the test culture together with the intrinsic regulation mechanisms of the naphthalene degradation pathway as well as the physiological aspects of the lux gene fusion have to be taken into account. The method presented provides a high potential for in situ bioprocess monitoring. In addition, the results obtained with immobilized cells provide a basis for the development of biosensors for environmental applications in specific pollutant monitoring in waste streams and soil slurry systems but, as a general method, also for more conventional biotechnological process control. 8 refs., 2 figs., 1 tab
Transduction of linked chromosomal genes between Pseudomonas aeruginosa strains during incubation in situ in a freshwater habitat
Both transduction of single chromosomal loci and cotransduction of closely linked loci were observed between lysogenic and nonlysogenic strains of Pseudomonas aeruginosa in a freshwater habitat. Transductants were recovered at frequencies of 10-6 to 10-5 transductants per CFU. Transductants of lysogenized strains were recovered 10- to 100-fold more frequently than were transductants of nonlysogenic parents. Lysogens are thus capable of introducing phages which mediate generalized transduction into the natural microbial community and serving as recipients of transduced DNA. It would appear that lysogeny has the potential of increasing the size and flexibility of the gene pool available to natural populations of bacteria. The ability to generate and select new genetic combinations through phage-mediated exchange can be significant in the face of a continually changing environment and may contribute to the apparent fitness of the lysogenic state in natural ecosystems.Peer reviewedMicrobiology and Molecular Genetic
Single-shot velocity-map imaging of attosecond light-field control at kilohertz rate
High-speed, single-shot velocity-map imaging (VMI) is combined with carrier-
envelope phase (CEP) tagging by a single-shot stereographic above-threshold
ionization (ATI) phase-meter. The experimental setup provides a versatile tool
for angle-resolved studies of the attosecond control of electrons in atoms,
molecules, and nanostructures. Single-shot VMI at kHz repetition rate is
realized with a highly sensitive megapixel complementary metal-oxide
semiconductor camera omitting the need for additional image intensifiers. The
developed camerasoftware allows for efficient background suppression and the
storage of up to 1024 events for each image in real time. The approach is
demonstrated by measuring the CEP-dependence of the electron emission from ATI
of Xe in strong (≈1013 W/cm2) near single-cycle (4 fs) laser fields. Efficient
background signal suppression with the system is illustrated for the electron
emission from SiO2nanospheres
Land Cover Trends Dataset, 1973–2000
The U.S. Geological Survey Land Cover Trends Project is releasing a 1973–2000 time-series land-use/land-cover dataset for the conterminous United States. The dataset contains 5 dates of land-use/land-cover data for 2,688 sample blocks randomly selected within 84 ecological regions. The nominal dates of the land-use/land-cover maps are 1973, 1980, 1986, 1992, and 2000. The land-use/land-cover maps were classified manually from Landsat Multispectral Scanner, Thematic Mapper, and Enhanced Thematic Mapper Plus imagery using a modified Anderson Level I classification scheme. The resulting land-use/land-cover data has a 60-meter resolution and the projection is set to Albers Equal-Area Conic, North American Datum of 1983. The files are labeled using a standard file naming convention that contains the number of the ecoregion, sample block, and Landsat year. The downloadable files are organized by ecoregion, and are available in the ERDAS IMAGINETM (.img) raster file format
A destabilized bacterial luciferase for dynamic gene expression studies
Fusions of genetic regulatory elements with reporter genes have long been used as tools for monitoring gene expression and have become a major component in synthetic gene circuit implementation. A major limitation of many of these systems is the relatively long half-life of the reporter protein(s), which prevents monitoring both the initiation and the termination of transcription in real-time. Furthermore, when used as components in synthetic gene circuits, the long time constants associated with reporter protein decay may significantly degrade circuit performance. In this study, short half-life variants of LuxA and LuxB from Photorhabdus luminescens were constructed in Escherichia coli by inclusion of an 11-amino acid carboxy-terminal tag that is recognized by endogenous tail-specific proteases. Results indicated that the addition of the C-terminal tag affected the functional half-life of the holoenzyme when the tag was added to luxA or to both luxA and luxB, but modification of luxB alone did not have a significant effect. In addition, it was also found that alteration of the terminal three amino acid residues of the carboxy-terminal tag fused to LuxA generated variants with half-lives of intermediate length in a manner similar to that reported for GFP. This report is the first instance of the C-terminal tagging approach for the regulation of protein half-life to be applied to an enzyme or monomer of a multi-subunit enzyme complex and will extend the utility of the bacterial luciferase reporter genes for the monitoring of dynamic changes in gene expression
Autonomous Bioluminescent Expression of the Bacterial Luciferase Gene Cassette (lux) in a Mammalian Cell Line
The bacterial luciferase (lux) gene cassette consists of five genes (luxCDABE) whose protein products synergistically generate bioluminescent light signals exclusive of supplementary substrate additions or exogenous manipulations. Historically expressible only in prokaryotes, the lux operon was re-synthesized through a process of multi-bicistronic, codon-optimization to demonstrate for the first time self-directed bioluminescence emission in a mammalian HEK293 cell line in vitro and in vivo.Autonomous in vitro light production was shown to be 12-fold greater than the observable background associated with untransfected control cells. The availability of reduced riboflavin phosphate (FMNH(2)) was identified as the limiting bioluminescence substrate in the mammalian cell environment even after the addition of a constitutively expressed flavin reductase gene (frp) from Vibrio harveyi. FMNH(2) supplementation led to a 151-fold increase in bioluminescence in cells expressing mammalian codon-optimized luxCDE and frp genes. When injected subcutaneously into nude mice, in vivo optical imaging permitted near instantaneous light detection that persisted independently for the 60 min length of the assay with negligible background.The speed, longevity, and self-sufficiency of lux expression in the mammalian cellular environment provides a viable and powerful alternative for real-time target visualization not currently offered by existing bioluminescent and fluorescent imaging technologies
- …