28,075 research outputs found

    M51's spiral structure

    Get PDF
    The M51 system (NGC 5194/5195) provides an excellent problem both in spiral structure and in galaxy interactions. The authors present an analytic study of a computer experiment on the excitation mechanisms for M51's spiral arms and whether or not a halo is important for these mechanisms. This work extends previous numerical studies of the M51 system by including self-gravitation in a two component disk: gas and stars, and a dark halo. The analytic study provides two new observational constraints: the time (approx. 70 to 84 million years ago) and position angle of perigalacticon (300 degrees). By using these constraints and a simple conic approximation, the search for the companion's possible orbit is greatly simplified. This requires fewer N-body simulations than a fully self-gravitating orbit search

    Deconvolution of gas chromatographic data

    Get PDF
    The use of deconvolution methods on gas chromatographic data to obtain an accurate determination of the relative amounts of each material present by mathematically separating the merged peaks is discussed. Data were obtained on a gas chromatograph with a flame ionization detector. Chromatograms of five xylenes with differing degrees of separation were generated by varying the column temperature at selected rates. The merged peaks were then successfully separated by deconvolution. The concept of function continuation in the frequency domain was introduced in striving to reach the theoretical limit of accuracy, but proved to be only partially successful

    A simulation survey of galaxy interactions

    Get PDF
    Many carefully selected samples of interacting galaxies have been observed extensively in attempts to clarify whether interaction produces activity in galaxies. Because the sample members represent a wide range of encounter parameters and times, one can then study whether there are correlations between observable encounter features and, for example, Seyfert activity. On the other hand, in theoretical studies, simulations typically deal with either time-consuming detailed modelling of single galaxy pairs or tracing a few model encounters over time. The authors extend the observational survey approach by combining it with a simulation survey. The authors are conducting a survey of model encounters, covering the most important encounter parameters over a wide range. Some parameters, such as companion structure and initial velocity, are demonstratably less important and can be ignored in a first pass. The parameter range must be richly enough sampled so that the authors can evaluate the uniqueness of the observable morphology and velocity structure of the resulting simulated pairs to diagnose unobservable companion orbit parameters. They are using a self-gravitating polar n-body code run on the Cray X-MP at the Alabama Supercomputer Network. For each simulation, the authors have stellar and gas distributions predicted over, typically, a billion years, along with information on gas motions within the disk and any material captured by the companion or lost to the system. Features of disturbed spiral galaxies are sensitive enough to time and encounter parameters so that a match of the simulation survey results to observations can be applied as starting points to infer unobservable orbital or system parameters in actual sample members. This should enable them to examine whether interesting observed properties (Seyfert activity, nuclear star-formation rate) are functions of unobservable dynamical properties which characterize each encounter. Any correlations (or lack of some expected ones) will provide strong clues as to how or whether these phenomena are related to interactions. Aside from its use with such observed samples, this survey should greatly speed determination of initial orbital parameters for more detailed subsequent simulations of individual systems

    Phase transitions in systems with two species of molecular motors

    Full text link
    Systems with two species of active molecular motors moving on (cytoskeletal) filaments into opposite directions are studied theoretically using driven lattice gas models. The motors can unbind from and rebind to the filaments. Two motors are more likely to bind on adjacent filament sites if they belong to the same species. These systems exhibit (i) Continuous phase transitions towards states with spontaneously broken symmetry, where one motor species is largely excluded from the filament, (ii) Hysteresis of the total current upon varying the relative concentrations of the two motor species, and (iii) Coexistence of traffic lanes with opposite directionality in multi-filament systems. These theoretical predictions should be experimentally accessible.Comment: 7 pages, 4 figures, epl style (.cls-file included), to appear in Europhys. Lett. (http://www.edpsciences.org/epl

    First Results from the Transit Ephemeris Refinement and Monitoring Survey (TERMS)

    Get PDF
    Transiting planet discoveries have yielded a plethora of information towards understanding the structure and atmospheres of extra-solar planets. These discoveries have been restricted to the short-period or low-periastron distance regimes due to the bias inherent in the geometric transit probability. Through the refinement of planetary orbital parmaters, and hence reducing the size of transit windows, long-period planets become feasible targets for photometric follow-up. Here we describe the TERMS project which is monitoring these host stars at predicted transit times

    Patient-oriented and performance-based outcomes after knee autologous chondrocyte implantation: a timeline for the first year of recovery

    Get PDF
    It is well established that autologous chondrocyte implantation (ACI) can require extended recovery postoperatively; however, little information exists to provide clinicians and patients with a timeline for anticipated function during the first year after ACI. Objective: To document the recovery of functional performance of activities of daily living after ACI. Patients: ACI patients (n = 48, 29 male 35.1 ± 8.0 y). Intervention: All patients completed functional tests (weight-bearing squat, walk-across, sit-to-stand, step-up/over, and forward lunge) using the NeuroCom long force plate (Clackamas, OR) and completed patient-reported outcome measures (International Knee Documentation Committee Subjective Knee Evaluation Form, Lysholm, Western Ontario and McMaster Osteoarthritis Index WOMAC, and 36-Item Short-Form Health Survey) preoperatively and 3, 6, and 12 mo postoperatively. Main Outcome Measures: A covariance pattern model was used to compare performance and self-reported outcome across time and provide a timeline for functional recovery after ACI. Results: Participants demonstrated significant improvement in walk-across stride length from baseline (42.0% ± 8.9% height) at 6 (46.8% ± 8.1%) and 12 mo (46.6% ± 7.6%). Weight bearing on the involved limb during squatting at 30°, 60°, and 90° was significantly less at 3 mo than presurgery. Step-up/over time was significantly slower at 3 mo (1.67 ± 0.69 s) than at baseline (1.49 ± 0.33 s), 6 mo (1.51 ± 0.36 s), and 12 mo (1.40 ± 0.26 s). Step-up/over lift-up index was increased from baseline (41.0% ± 11.3% body weight BW) at 3 (45.0% ± 11.7% BW), 6 (47.0% ± 11.3% BW), and 12 mo (47.3% ± 11.6% BW). Forward-lunge time was decreased at 3 mo (1.51 ± 0.44 s) compared with baseline (1.39 ± 0.43 s), 6 mo (1.32 ± 0.05 s), and 12 mo (1.27 ± 0.06). Similarly, forward-lunge impact force was decreased at 3 mo (22.2% ± 1.4% BW) compared with baseline (25.4% ± 1.5% BW). The WOMAC demonstrated significant improvements at 3 mo. All patient-reported outcomes were improved from baseline at 6 and 12 mo postsurgery. Conclusions: Patients' perceptions of improvements may outpace physical changes in function. Decreased function for at least the first 3 mo after ACI should be anticipated, and improvement in performance of tasks requiring weight-bearing knee flexion, such as squatting, going down stairs, or lunging, may not occur for a year or more after surgery

    Comprehensive Observations of a Solar Minimum CME with STEREO

    Full text link
    We perform the first kinematic analysis of a CME observed by both imaging and in situ instruments on board STEREO, namely the SECCHI, PLASTIC, and IMPACT experiments. Launched on 2008 February 4, the CME is tracked continuously from initiation to 1 AU using the SECCHI imagers on both STEREO spacecraft, and is then detected by the PLASTIC and IMPACT particle and field detectors on board STEREO-B. The CME is also detected in situ by ACE and SOHO/CELIAS at Earth's L1 Lagrangian point. The CME hits STEREO-B, ACE, and SOHO on 2008 February 7, but misses STEREO-A entirely. This event provides a good example of just how different the same event can look when viewed from different perspectives. We also demonstrate many ways in which the comprehensive and continuous coverage of this CME by STEREO improves confidence in our assessment of its kinematic behavior, with potential ramifications for space weather forecasting. The observations provide several lines of evidence in favor of the observable part of the CME being narrow in angular extent, a determination crucial for deciding how best to convert observed CME elongation angles from Sun-center to actual Sun-center distances.Comment: 27 pages, 10 figures, AASTEX v5.2, accepted by Ap

    Proton transport and torque generation in rotary biomotors

    Full text link
    We analyze the dynamics of rotary biomotors within a simple nano-electromechanical model, consisting of a stator part and a ring-shaped rotor having twelve proton-binding sites. This model is closely related to the membrane-embedded F0_0 motor of adenosine triphosphate (ATP) synthase, which converts the energy of the transmembrane electrochemical gradient of protons into mechanical motion of the rotor. It is shown that the Coulomb coupling between the negative charge of the empty rotor site and the positive stator charge, located near the periplasmic proton-conducting channel (proton source), plays a dominant role in the torque-generating process. When approaching the source outlet, the rotor site has a proton energy level higher than the energy level of the site, located near the cytoplasmic channel (proton drain). In the first stage of this torque-generating process, the energy of the electrochemical potential is converted into potential energy of the proton-binding sites on the rotor. Afterwards, the tangential component of the Coulomb force produces a mechanical torque. We demonstrate that, at low temperatures, the loaded motor works in the shuttling regime where the energy of the electrochemical potential is consumed without producing any unidirectional rotation. The motor switches to the torque-generating regime at high temperatures, when the Brownian ratchet mechanism turns on. In the presence of a significant external torque, created by ATP hydrolysis, the system operates as a proton pump, which translocates protons against the transmembrane potential gradient. Here we focus on the F0_0 motor, even though our analysis is applicable to the bacterial flagellar motor.Comment: 24 pages, 5 figure

    Directed flow in non-adiabatic stochastic pumps

    Full text link
    We analyze the operation of a molecular machine driven by the non-adiabatic variation of external parameters. We derive a formula for the integrated flow from one configuration to another, obtain a "no-pumping theorem" for cyclic processes with thermally activated transitions, and show that in the adiabatic limit the pumped current is given by a geometric expression.Comment: 5 pages, 2 figures, very minor change
    corecore