We analyze the dynamics of rotary biomotors within a simple
nano-electromechanical model, consisting of a stator part and a ring-shaped
rotor having twelve proton-binding sites. This model is closely related to the
membrane-embedded F0 motor of adenosine triphosphate (ATP) synthase, which
converts the energy of the transmembrane electrochemical gradient of protons
into mechanical motion of the rotor. It is shown that the Coulomb coupling
between the negative charge of the empty rotor site and the positive stator
charge, located near the periplasmic proton-conducting channel (proton source),
plays a dominant role in the torque-generating process. When approaching the
source outlet, the rotor site has a proton energy level higher than the energy
level of the site, located near the cytoplasmic channel (proton drain). In the
first stage of this torque-generating process, the energy of the
electrochemical potential is converted into potential energy of the
proton-binding sites on the rotor. Afterwards, the tangential component of the
Coulomb force produces a mechanical torque. We demonstrate that, at low
temperatures, the loaded motor works in the shuttling regime where the energy
of the electrochemical potential is consumed without producing any
unidirectional rotation. The motor switches to the torque-generating regime at
high temperatures, when the Brownian ratchet mechanism turns on. In the
presence of a significant external torque, created by ATP hydrolysis, the
system operates as a proton pump, which translocates protons against the
transmembrane potential gradient. Here we focus on the F0 motor, even though
our analysis is applicable to the bacterial flagellar motor.Comment: 24 pages, 5 figure