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CHAPTER I
INTRODUCTION

This research involves the use of deconvolution methods on gas chromato-
graphic data to obtain an accurate determination of the relative amounts of
each material present by separating the merged peaks.

The underlying assumption implied throughout is that the area under the
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S an accu 0 resent.  Due to
uncontrollable errors at every stage of operation, this is never exactly
true. However, it is a consideration that must always be borne in mind in
designing, building, and operating the gas chromatograph, its detector, and
other related equipment. As peak areas are less dependent on operating
conditions than other methods, they are preferred by most researchers for
accurate determinations.2

The promising new concept of function continuation in the frequency
domain was introduced in striving to bring the art of deconvolution to its
theoretical 1limit of accuracy. This proved only partially successful.

The methods used here will have general applicability to any deconvolu-
tion where the desired result consists of a number of well separated distrib-

utions.



Gas Chromatography

Gas chromatography is an effective and widely used method for the
separation of gases and volatile liquids or solids in the gaseous state.

A small sample of the material being examined is injected into a stream
of an inert gas such as nitrogen, hydrogen, carbon dioxide, argon, or helium
which carries it into a column containing a suitable medium capable of retard-
ing the flow, by varying degrees, of the individual components of the sample
as they flow through the column. Differences in the time various components
remain in adsorption or partition on the material in the column is again the
factor which makes separation possible. The separated components then emerge
from the column at discrete intervals (characteristic of each component) and
pass through some form of detector. As a general rule, gas analyses are
carried out on adsorption columns (gas/solid chromatography), while liquids
and volatile solids are separated on partition columns (gas/liquid chromato-
graphy). >

The data used in the present study were obtained from a gas/liquid
chromatograph. The carrier gas was helium and the detector was a Varian 1400
flame ionization detector. The sample compounds consisted of five xylenes.

The flame ionization detector is a differentiating type, making the
area under the peak a suitable measure of the amount of material present.4

The flame ionization detector operates on the principle that the
electrical conductivity of a gas is directly proportional to the concentration
of charged particles within the gas. Effluent gas from the column is mixed

with hydrogen and burned in air. Ions and electrons formed in the flame



enter the electrode gap, decreasing the gap resistance, thus permitting a
current to flow in the external circuit.®

The flame ionization detector is extraordinarily insensitive to air and
water, making it especially suitable for the analysis of air pollutants or
aqueous samples such as beverages, biological materials, and other liquids.
For other materials the areas obtained must be multiplied by the proper
correction constant to obtain the true proportions.6

The flame ionization detector has the widest linear range of any detector
in common use.’

The analog output of the gas chromatograph was digitized by bringing its
output into the HP2100 minicomputer. Data were acquired at a 10 hz rate.8

Electronic digital integration was accomplished by accumulating the
data points when an increase in signal was detected and terminating when the
signal again increased, which, incidentally, began a new count.9

Temperature programming was used on the substances making up this data.

The temperature was increased at a linear rate different for each run.10

The Data

Data are given for five runs. The same sample composition, consisting
of five test substances (see Figures 1 and 2), was injected each time. The
graph of Run 3 was not included as nothing new of significance was illustrated.
Each run was taken at a different temperature. See Table 1 for specifications.
The interval between each data point was quite small compared to the
standard deviation of the narrowest peak, thus making the data suitable for

application of the fast Fourier transform.
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Fig. 1. Data of the first two runs: (a) is data of Run 2,

Run 1.

(b) is data of



(a)

(b)

Fig. 2. Data of the last two runs: (a) is data of Run 5, (b) is data of Run 4.
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TABLE 1
GAS CHROMATOGRAPH SPECIFICATIONS

Temperature Programming

Run 1 Run 2 Run 3 Run 4 Run 5
Beginning o 0 o
Temperature 500 750 100 135 150
Rate of o
Change 4%/min.  49/min. 4%/min. 69/min. 6%/min.

G.C. Parameters

107°

He 20 cc/min.
H2 30 cc¢/min.
Air 300 cc/min.

Injection 0.75uf 22A

Integrator

100 mv input = 1 v output

Slope sens. 0.01 up; 1.0 down

Zero delay

Noise suppression 3

Area threshold 1
Shoulder control on (front)

rear 0.1



An inspection of the data points and its graph reveals that it is
relatively smooth and free from noise.

The tic marks, quite noticeable on the graph, were imposed on the
data whenever the integrator encountered any increase in the signal. Removing
the tic marks was quite easy. Graphs were drawn which included a few points
on both sides of the tic marks. A smooth curve was drawn through these
points. Intermediate points were then taken from the graph and replaced
those of the tic marks on the data. The interval was small and the data was
digitized so that this method was sufficiently accurate for the purpose. .

The baseline drift is negligibly small and the baseline will be taken

at zero.



CHAPTER II
FAST FOURIER TRANSFORM DECONVOLUTION

The fast Fourier transform is a computational aigorithm for calculating
the discrete form of the complex Fourier series. (See Appendix B for a
discussion of the discrete Fourier transform.) The addition theorem, shift
theorem, convolution theorem, and other theorems familiar to users of the
continuous Fourier transform with infinite 1imits may also be developed for
the complex Fourier series.

The complex Fourier series, defined over the interval (0,2p) for any

arbitrary function, f(t), is given by:

oo

f(t) = ) ¢, exp(nimt/p) (2.1)

S =0

where the complex coefficients, Cp» are determined from:

2p
c = f £(t) exp(-nimt/p)dt (2.2)
0

The addition theorem may be stated as follows:

If Cn1 and Cn are the nth coefficients, respectively, of f1(t) and

2
f (t), then the nth coefficient, C_, of f=f +f disC . +C ,.
2 n 1 2 nl n2

Proof:

o
]

1 2P .
o J’ f(t) exp(-nivt/p)dt

0



Akl s

p
Cn = %B_ -f Efl(t) + fz(t)] exp(-nimt/p)dt
0
2p
€, = — [ f (t) exp(-nint/p)dt
2p J !
0
2p
+ %E; ja fz(t) exp(-nimt/p)dt
0
C,=Cn an (2.3)

The shift theorem will be derived next.

If the function is shifted by an amount a, the coefficients will be

changed as follows: Let these coefficients be distinguished from the previous
coefficients by primes.
/ 2p
¢l = J‘ f(t-a) exp(-nimt/p)dt (2.4)
n p
0
, 1 %
Cn = E;‘ j' f(t-a) exp(-nima/p) exp(nima/p) exp(-niwt/p)dt
0
2p
, 1 . .
Cn = exp(-nima/p) f(t-a) exp(-ni (t-a)/p)dt
P 0
Change variables: Let x = t-a dx = dt
2pta
C; = %; exp(-nima/p) _{ f(x) exp(-nimx/p)dx (2.5)
a
9



Consider the integral in Equation (2.5).

2pta

f(x) exp(-ﬁinx/p)dx = f(x) exp(-nimx/p)dx

[=1]
e N
o3 o

2p+a

+ ,( f(x) exp{-niwx/p)dx
2p

(2.6)

The complex exponential repeats itself after every interval of 2p, and its

value from 2p to 2p+a is the same as its value from O to a. If f(x) is a

periodic function of period 2p, then its value from 2p to 2p+a will also be

the same as from 0 to a (the shift theorem will only be applied to functions

with this property). We may then write Equation (2.6) as:

2p a

fﬁ f(x) exp(-nimx/p)dx + fﬂ f(x) exp(-nimx/p)dx
a 0

2p

= .[ f(x) exp(-nimx/p)dx
0

Substituting this result in the integral in Equation (2.5):

2p
v 1 . ;
Cn = % exp(-nima/p) j' f(x) exp(-nimx/p)dx
0
2p
¢ = exp(-nina/p) B—p fo f(x) exp(-niTTX/P)dg}
c = exp(-nira/p)C_

10

(2.7)

(2.8)



Thus the nth coefficient for the shifted function can be obtained simply
by multiplying the coefficient of the unshifted function by the phase factor
exp(-nima/p).

With this result the convolution theorem for complex Fourier series may
be derived.

The data given are assumed to be a convolution of resolved peaks with
some "machine function" that causes a spreading and "smearing" of the peaks

together. The complex coefficients, then, are the transform of this con-

volution:

h 1 2p [ 2p .
Cn = % f' f‘ f(x)g(t-x)dx exp(-nimt/p)dt (2.9)
0
where g(t) is the machine function, and f(t) is the assumed form of the data
before convolution. Let C: denote the coefficients of the data, Cg the
coefficients (transform) of the machine function, and C: the coefficients
(transform) of the deconvolved data.

Note that the continuous integral was used rather than a discrete sum
as of the discrete series. This is because the actual convolution was
assumed to be a continuous process. Actually, as long as we have sufficient
data points, the results of both methods should be essentially the same.

The integral permits convenient mathematical manipulation.
Assuming sufficient continuity so that the order of integration may

be interchanged:

h 4 2p 2p
C = — JP f(x) JF g(t-x) exp(-nint/p)dt {dx
n 2p
0 0

11



Applying the shift theorem:

2p 2p
h
C = f— f(x) exp(-nimx/p) 1 j~ g(t) exp(-nint/p)dt |dx
n 0 2p 0
o 2P
= ] -Nni g
C, f' f(x) exp(-nirx/p)C3 dx
O .
2p
h: g .]_ -ni
Cn Cn2p % f1 f(x) exp(-nimx/p)dx
0
h - d-f
Cn 2anCn (2.10)

The product of the coefficients of the original function and the machine
function multiplied by the constant factor, 2p, gives the coefficients of the
convolved function. When all that is given is the data and some machine
function, and the separated peaks are desired, Equation (2.10) is usually

written in the form:

ch

f_ 1. n

‘= 2 9 (2.11)
n

The coefficients of the separated peaks may be obtained by dividing the
coefficients of the data by the coefficients of the machine function and
multiplying by the constant factor 1/2p. Transforming to the time domain will
give the resolved peaks. This process is known as "'deconvolution"., It should
be apparent that there is no unique set of coefficients that will satisfy this
equation. The coefficients of the machine functions used in this research

die out rather quickly at the higher frequencies and are essentially zero over

most of the spectrum. Assuming C: is zero in these regions, we have the

12
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indeterminate case and almost any spectral function given for these regions

where €3 is zero added to tHe unique determination CR/C% where Cg is not zero
will satisfy Equation (2.11). One important particular solution gives C: =0
when Cg = 0. This is known as the "principal solution" as given by Bracewell
and Roberts.]2

Note here that a single isolated peak for the case of gas chromatography
cannot be taken for the machine function as it is not the response of an im-
pulse; it is the response of one of the original resolved peaks "smeared" by
the machine function to give the data. It is not possible nor desirable to
assume the original input were "spikes." The sidelobes quickly become formid-
able as the peaks become sharper. (See Appendix A for a discussion of sidelobes.)
In accordance with the hypothesis that the area under the peak is proportional
to the amount of material present, the deconvolution needs to be carried only
to the point of barely resolving the peaks, hence the assumption that the orig-
inal distribution of material before "smearing" was in the form of barely
resolved peaks.

Of course, one realizes that the form of the convolution integral is
obtained by considering the original input peaks to be broken up into infin-
jtesimal "impulses,"” each one of these giving rise to infinitesimal "machine
functions" positioned in a continuous manner on the t-axis and that summing
all these together gives the data.13

A first guess at a good machine function, then,might be one of the same
shape as an isolated peak, but much narrower; more specifically, if an isolated
peak can be expressed in some functional form, g(t), then a machine function

of the form g(at) would be tried, where a must be greater than one. This was

tried with only moderate success. The best results were obtained by taking

13



this function and giving it more "skewness." The assertion that this function
is a good machine function has no firm foundation in theory as will be discus-
sed subsequently. First, the linearity and shift-invariance of the apparatus
will be discussed.

The flame ionization detector is linear over a wide range. Stated
mathematically, one would say that for certain amounts of different gases run
through the chromatograph singly and forming the distributions:

ﬁ(t), fz(t), fa(t),-etc., then differing amounts of these same substances
run through the machine together would form the composite distribution:

afl(t) + bfz(t) + Cfs(t) + .

regardless of whether or not they were overlapping. The constants a,b,c, etc.,
are determined by the proportions of the substances in the sample.

Even a cursory examination, however, reveals that the distributions are
not shift-invariant. Being shift-invariant means that for an amount of gas
coming out of the tube earlier or later than a given gas should have the same
shape as that gas. To state this more explicitly, if the distributions are
shift-invariant, then for an arbitrary distribution of functional form f(t),
any other distribution could be expressed in the form c f(t-c,), where c
and c2 are constants. An examination of the data shows that the peaks seem
to be all of the same form but that the ones coming out earlier are narrower
than those coming out later. Measurements show that the widths at half-max-
imum become larger in a continuous manner as one goes from left to right in the
data. This lack of shift-invariance will affect the accuracy of the results
only slightly. This will be discussed in more detail subsequently.

Taking the area under each peak as a measure of the amount of each

material present, how this area would be changed, if any, under deconvolution

14
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needs to be investigated. To look at this problem in its simplest form, free
of all nonessentials, consider two isolated peaks of any arbitrary shape and
size. The areas of each would be given by, respectively:

2p 2p

_f f,(t)dt and Jﬂ f,(t)dt

0 0

The ratio of their areas would be:

f,(t)dt

oD [T

Convolving each of these functions with some arbitrary machine function, g(t),
would yield:
uld y 2
hy(t) = fi(t)g(x-t)dt
0
for f,(t) and an expression of similar form for f,(t). The ratio of the

areas after convolution would be:

2p 2p | 2p
j‘ hl(x)dx J’ j‘ f (t)g(x-t)dt | dx
0 _ 0 \"0 (2.12)
¥ (x)d e f,(t)g(x-t)dt |d
h,{x)dx ,(t)gix- X
L g,

As they are both of similar form, only one expression will be considered.

15



jP jE f.(t)g(x-t)dt| d 79 f kt) jg (x-t)dx |dt
1\ LJjgiX= X = 1 g(x-t)dx
. _

The expression on the right was obtained by interchanging the order of
integration. The integral over g(x-t) will be a constant as it gives the area
under g which will remain the same regardless of how much it is shifted along
the axis by t. Let this integral be denoted by K. A similar result will be

obtained for hz(t) and Equation (2.12) may be written:

2p 2p 2p
f h,(t)dt ,( f, (t)Kkdt Kf fi(t)dt
- 0 0

2 2 T2
f h,(t)dt fo(t)Kdt Kf f,(t)dt
0 0 0
2p 2p

h,(t)dt f f (t)dt
0 ] (2.13)
P e

h, (t)dt f,(t)dt
[ i

and the same ratio of areas as before convolution is obtained. Thus the

same ratio of peak areas will be obtained under deconvolution. The case
where the peaks are merged needs to be considered. It should be apparent
after a little thought that if two or more peaks of unknown shape are

merged there is no possible way to determine how much of the smeared together
area to assign to each distribution. This situation is actually no different
from the one where the peaks are well separated, but only more vividly illus-

trates the problem. The deconvolution process requires closer examination.

16



From the convolution theorem, the coefficients of the deconvolved

function are given by:

ch
cf-1 (2.11)
n 2p 3

Suppose the areas are arbitrarily assigned under two smeared together peaks
and the complete function written as the sum of two others:
h(t) = hy(t) + h,(t)

By the addition theorem the transform would be:

h
where C: and C are the transforms of h;(t) and h,(t), respectively,
1 Ny
Dividing this by the transform of the machine function, we get the coefficient

of the deconvolved function.

h 4 ch .

h Cn n h
C:=Lc_g=;__ _g_ L_Cgl_u_ig_z
2p Cp p Cq 2p Cn 2p Cn

Taking the inverse transform and making use of the addition theorem, we get
for the deconvolved function:

f(t) = f,(t) + f,(t)

where f, (t) and f,(t) are the deconvolutions of hy(t) and h,(t), respectively.
Suppose the areas under the peaks were assigned such that two other quite
different functions are obtained.

h(t) = hy(t) + hy(t)

17



After deconvolution the result obtained is:

f(t) = f3(t) + fu(t)
The deconvolved result is the sum of two quite different distributions. This
is not a contradiction; only one result is obtained. For instance, if f,
and f, were both zero on some region of the t-axis and f, was negative a
certain amount and f, was positive by the same amount, then f; + f, would
equal zero in that region as would f, + f,, giving the same result in each case.
Of course, the areas under each of these distributions would in general be
different, so that if one didn't know the shapes of the two original peaks
before smearing, then there would be no way of determining the correct areas.
However, if the correct shapes of the peaks were known, even if they were
smeared together, then one could deconvolve them and know how much area to
assign to each peak by examining the deconvolution of each peak separately.

For this particular problem it is known within narrow limits what the
peak shapes should be. All are reasonably uniform except for small variations
in narrowness. If, then, a machine function can be found that gives an
isolated peak a deconvolution with small negative regions, and if the decon-
volved peaks all have similar form, then one may accept the results with a
high degree of confidence. The requirement of small negative regions for the
deconvolved peaks is if the deconvolution gives well separated peaks with no
negative regions, then there will be no problem of cancellation of the area
of adjacent peaks by these negative regions and hence there will be no problem
in assigning the areas under the peaks.

For the sake of completeness, a deconvolution of a linear, shift-invariant
set of data will be included.

Any number of distributions making up the data could be expressed in the

18



following functional form:
H(t) = ah(t-t1) + bh(t-t2) + ch(t-t3) + . . . (2.14)
where a, b, c, etc., t;, t,, ts, etc., are constants. Apply the convolution

theorem, and employ the addition and shift theorems:

F 1 C: a exp(-nint,/p) C: +b exp(-nintz/p)c: ...
C =2 — = .
n 2p g
n

g
2an

h

C
CF = |a exp(-nint, /p) + b exp(-ninta/p) + . . . %—- n (2.15)
n P 9

n

where C: is the transform of h(t). Transforming back to the time domain would
yield the expression:

F(g) = af(t-t;) + bf(t-tz) + cf(t-t3) + . . . (2.16)
where f(t) is the deconvolution of h(t).

So, if a machine function can be found that gives a minimum of negative
regions for the deconvolution of an isolated peak, then the correct deconvo-
Tution of the data will give peaks all of the same shape, differing only in
their heights. Note also that the location of the peaks will remain unchanged

under deconvolution.

19
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CHAPTER III
DECONVOLUTION OF GAS CHROMATOGRAPHIC DATA

The general method of performing deconvolution is as follows: One must
initially obtain a suitable apparatus function. A transform is then made of
this machine function and of the data. The transform of the data is divided

by the transform of the machine function. Equation (2.11) is used for this.

ch |
¢f= L 1 (2.11)

These coefficients are then transformed back to the time domain to give the
resolved peaks. The small imaginary part of these figures is due to calcula-
tfons roundoff and can be neglected.

If the entire transform after division is transformed back to the time
domain, the result, quite apparently, is nonsense. An inspection of the trans-
forms reveals why this is the case (see Figure 3). Note from the graphs of
the machine function and the data that the coefficients of the lower frequen-
cies are the only appreciable ones (see Figure 4). They begin rather large
at the lowest frequencies and fall off in a regular manner. It is apparent
in nearly all cases that if this trailing off of the function were extrap-
olated into the "noise" it would approach zero rather quickly, certainly in
all cases before at most a hundred coefficients were taken. The coefficients
falling to zero this quickly reveal that no information contained in our data
was lost, getting at Teast two points per wavelength on the highest frequency
present (see Appendix B where the sampling theorem is disgussed further). By

its relation to the continuous Fourier transform, it is apparent that the

20
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Fig, 3. Graph of the real parts of the complex numbers that result from divi-
sion of the coefficients of the data by coefficients of the machine function. These
coefficients are truncated at some point (see arrows) and transformed back to the time

domain to give the deconvolution.
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Fig. 4. Graphs of coefficients of the data and two machine functions: (a) is
graph of real part of complex coefficients of the machine function, (b) is real part of

coefficients of data, and {(c) is real part of coefficients of a gaussian function (not

centered at zero).
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envelope of the transforms of gaussians are gaussian also and would fall to
zero rather quick}y.]4 However, ore notes by examining the transforms that

a small residual "noise" extends the whole length of the spectrum. This is
due to machine roundoff in the computer, noise and error in the original data,
and digitizing of data. This noise seems to be completely random and as much
positive as negative, so it is not necessary to raise or lower the spectral
function to some "baseline."

Digressing for a moment, the data and the manner in which it was recorded
should be considered. Due to the mechanical and electrical properties, all
recording instruments have a "smoothing" effect on the recorded data. Speaking
in terms of the Fourier transform, one would say that the higher frequencies
are filtered out. As discussed in the introduction, the area under the peaks
is an accurate but not exact measure of the amount of material present. If
the data were not smoothed and the recorder accurately measured the amount
of material passing through an arbitrary cross section of the tube at every
instant of time, the data would show statistical fluctuation due to the
thermodynamic nature of the variables concerned. The smoothed data recorded
is some sort of "average" of these statistical fluctuations and the error
involved would in most cases be smail compared to other inherent errors.
Thus, for the purpose of taking the area under the peaks, the smoothed, or
"bandlimited" form for the data and the deconvolved peaks will be sufficiently
accurate for the purpose. If this is the case, the principal solution for
deconvolution will be the correct solution. Practically, the presence of noise
complicates the situation. The true spectrum of the machine function and its
associated deconvolution buried in the noise will be unknown. This will

necessitate truncation of the spectrum at some point before the true value of

23



Cg becomes zero.

The reason the noise assumes such significance is because of the division
of one frequency spectrum by another. One may accept with confidence the
results in the region where both coefficients are appreciable. However, in
the region of the noise, this division, due to the random nature of the noise,
can give rise to enormous numbers. Note from the graph that the largest numbers
are in this region. These results are completely meaningless and can quickly
overwhelm the correct values if very many coefficients are taken as one extends
into this region (see Figure 14). The results obtained when the dividing func-
tion is small represents one of the largest problems encountered in practical
deconvolutien. It is quite apparent that these frequencies must be "cut off"
before getting very far into this region. This is referred to as "window
closing" in the 11'ter'atur'e.]5

Various methods of dealing with this problem have been suggested. Some
merely accept the results as they are, taking it as being accurate enough for
their purposes. Others, desiring more accurate results, employ the use of one

16, 17 (See Appendix A

of the many "data windows" available (see Figure 5).
for a discussion of data windows.)

A Hamming window was applied in the frequency domain with only moderate
success (see Figure 6). Most of the problem was due to widening of the trans-
formed peaks. Such a strong deconvolution had to be taken in order to offset
this widening that some distortion was introduced. There was no improvement
over deconvolution with window not applied. Other worKers in the field have
used data windows, however, with some measure of success.]8

A data window, however, is an artificial device and its determinations

only fortuitously resemble the original function because of its reduction of
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Fig. 5. Four common data windows. Data is taken over the interval (O,T).
(a) Rectangle. (b) Extended cosine bell. (c) Hamming. (d) Parzen.
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the sidelobes. The peak shape is also usually changed slightly. To achieve
any substantial improvement in deconvolution, more precise information about
each particular problem is needed. Specifically, if one knew exactly what the
coefficients were supposed to be beyond the point of cutoff, the perfect
deconvolution should be obtained with no sidelobes. A measurement of the wave-
length of the sidelobes showed that it corresponds closely with the wavelength
of the cutoff frequency. This suggested that the sidelobes and other distortion
were possibly caused by "cutting off" the frequencies at this point. However,
this turned out to be only partially correct. Most of the error was found to
stem from a poor choice of the machine function. This will be discussed later.
For the following discussion, the assumption will be that the deconvolution

was performed with some "ideal" machine function. This was realized in
practice, to a large extent, by later deconvolutions.

Even with a good machine function, truncation of the frequencies will
cause error; there will be sidelobes. The main thrust of the ensuing argument
is that if a function could be found which resembled the deconvolved function
closely enough, such that the coefficients matched up with the coefficients
of the original deconvolved function, especially in the region close to the
point of cutoff, then the coefficients should be close in numerical value to
what the coefficients of the original function would have been had they not
been cut off. To test this hypothesis, an artificial function was built from
gaussian peaks of the same height, location, and width at half-maximum as the
deconvolved function (see Figures 7 and 8). The transform was taken and the
frequencies were cut off at the same point as the original function to see what
effect this would have. The results were very encouraging. The sidelobes

appeared at the same positions as the original deconvolution and had almost
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Fig. 7. Deconvolution with function continuation compared to straightforward
deconvolution for Run 4: (a) is data of Run 4, (b) is artificial function, (c) is

\
deconvolution with function continuation, and (d) is straightforward deconvolution.
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deconvolution for Run 5: (a) is data of Run 5, (b) is artificial function, (c¢) is

deconvolution with function continuation, and (d) is straightforward deconvolution.



(A P
A

the same amplitude. This indicated that most of the error remaining in
the deconvolved data was due to the act of "cutting off" the frequencies.
Coefficients of the artificial function were then substituted into the
original transform from the point of cutoff on. The transform was then a
hybrid with all of its original coefficients up to the point of cutoff, and
with coefficients from that point up to a hundred coefficients "grafted" from
the artificial function. The rest were set to zero as they originated in
noise anyway. Transforming back to the time domain to observe the results: The
results were very good for Run 4 (see Figures 7 and 9). The amplitude of the
sidelobes were reduced by more than half. The results from Run 5 were not
quite as impressive, only slight improvement being gained. However, the
coefficients after forty-six terms do not contribute much "ripple" anyway
(see Figures 8 and 10). A 1ittle more work on the machine function is probably
needed here.

More work needs to be done in obtaining a good artificial function also.
The matchup between the coefficients of the artificial function and the actual
function was crude (see Figure 11). This suggests a more fundamental dif-
ference between the two than a comparison of the data reveals. Encouragingly,
though, the match was as good in the region close to the cutoff point as at
any other region. The actual peaks were different from guassians in that they
were narrower close to the base. A promising field of research would be the
investigation of the efficacy of various peak shapes for artificial functions
in deconvolution. One item that needs to be pointed out here is that the
artificial function should resemble the original deconvolution after cutting
off its frequency spectrum, not before. This would involve some adjusting

as the solution is converged to. At any rate, the match worked well enough
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9. An enlarged view of the first three peaks of

is data of Run 4, (b) is artificial function,

is deconvolution with function continuation, and (d4) is
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Fig. 11. Coefficients of the artificial and deconvolved function.
"HOUT" contains the coefficients of the deconvolved function and "AROUT"

contains the coefficients of the artificial function.
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in practice to considerably improve Run 4.

Also, there is no reason why substitution of coefficients should begin
at the point of cutoff. More and more coefficients from the artificial function
may be substituted until a more desirable result is obtained (see Figures 12
and 13). However, one must keep in mind in this case that the final peaks will
take on more of the character of the artificial function.

Finding a good machine function will probably be the 1ar§est problem
encountered. A gaussian for the machine function was easiest to implement, but
left curious "shoulders" on the right side of some of the peaks, giving the
impression that there were additional peaks that could be revealed by taking
a stronger deconvolution. This was highly unlikely, however, as there was no
other evidence for this. It was suspected that the shoulders were due to not
considering the skewness of the peaks.

In the next attempt, several isolated peaks in Runs 1 and 2 were tried
as machine functions. Narrowing the peaks was easy to implement in a computer
program by selecting every other, or every third data point, or some other
interval. Interpolation between the points was introduced later to obtain
a finer gradation. The amount of resolution desired in the final deconvolution
is obtained by adjusting the narrowness of the machine function.

However, only small improvement over a guassian was gained by using
isolated peaks (see Figure 14). It was apparent that a function with more
"skewness" was needed. There are several functional forms, all referred to
generically as "skewed gaussians" that have been used successfully by other

19 The method used with success in this research was to

workers in the field.
choose an isolated peak, which was close to the desired shape anyway, and give

it an additional "skewness" (see Figures 7 and 8). This was accomplished
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Fig. 12. Comparison of two different cases of func-
tion continuation for Run 4: (a) is data of Run 4, (b) is
deconvolution with function continuation (20 to 100 coeffi-
cients substituted from artificial function), (c) is decon-
volution with function continuation (35 to 100 coefficients

substituted), and (d) is straightforward deconvolution.
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Fig. 13. Comparison of two different cases of func-
tion continuation for Run 5: (a) is data of Run 5, (b) is
deconvolution with function continuation (37 to 100 coeffi-
cients substituted from the artificial function), (c) is
deconvolution with function continuation (47 to 100 coeffi-
cients substituted), and (d) is straightforward deconvolu-

tion.
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Fig. 14. Deconvolution with .a gaussian and an isolated peak as machine
function. Also distortion in deconvolution introduced when too many coefficients
are taken: (a) is data of Run 4, (b) is deconvolution with coefficients truncated at
60 coefficients (distortion is considerable, (c) is deconvolution with 5th peak in

Run 1 as machine function, and (d) is deconvolution with a gaussian as machine function.



as follows: Taking an origin at the center of the peak, the function was
compressed behind the origin and expanded in front of it, the compression
and expansion being accomplished by only one factor (see Figure 16). A com-
puter program was written to implement this and also to adjust the narrowness
of the peak. By using a convenient feature of Xerox extended FORTRAN, the
INPUT statement, three parameters were input after the program was run which
seemed to be the only ones necessary for good deconvolution. The first input
controls the narrowness, the second adjusts the skewness, and the third shifts
the function either left or right on the t-axis. Various combinations of
these parameters are tried until a good deconvolution is obtained. What
constitutes a "good" deconvoiution is more fully discussed in Chapter II. If
the sidelobes are comparable in size to that obtained from the artificial
function when its coefficients are truncated at the same point, then one has
good reason to believe that a 1imit has been reached beyond which one cannot
go without using function continuation.

Also, one should keep in mind that a good deconvolution may not be unique.
To reiterate, a "good" deconvolution for the purpose of gas chromatography is
one in which the area associated with the deconvolution of an isolated peak
is coalesced into one well defined "peak" and the negative regions are small
so that there will be no problem in assigning the areas under the peaks.
There may be a number of machine functions and their associated deconvolutions
that satisfy these criteria.

An important consideration is that a good deconvolution seems to depend
critically on small irregularities in the machine function (see Figures 15
and 17). Note from Figure 15 that when the machine function that drops to

zero in the skewed portion is used, the graph of the deconvolution has larger
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Fig. 15. Comparison of a smooth machine function to
one with a sharp discontinuity. On left is machine function
as program MACHFUN outputs it. Note the dropoff in the tail.

On right is corrected machine function.

-

T

Fig. 16. Comparison of a skewed with an unskewed
machine function. On right is 5th peak in Run 1. On left
is same peak with "skewing." This was machine function

used for Run 4. ¢ = .4 for this peak.
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sidelobes and shows more distortion than the case where the machine function
is continued in an approximately linear fashion to zero.

To obtain a good deconvolution involves a certain amount of trial and
error. An inspection of the outputs at each stage is usually necessary.

Once good deconvolved peaks were obtained, the areas under the peaks
were acquired by numerical integration. Because of the sidelobes there were
usually small negative regions on both sides of the peaks. The areas under
the peaks were obtained by integrating between these negative regions as no
other methods were known for accurately treating this particular situation.
The suspicion is that if the sidelobes did not exist the peaks would probably
be slightly-broader at the base and that the true area would be slightly

greater than the values determined.
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CHAPTER 1V
ERROR ANALYSIS AND CONCLUSION

Error Analysis

The trapezoidal rule was used to determine the areas under the peaks.

-1 1
Area = [?xl +X, X, F L ts XN_]] At (A1)
The data points were so close together that any difference between this and

Simpson's rule would be so small that it could safely be neglected. Also,

the endpoints were either very smail or zero, so that an excellent approxima-

tion can be obtained by simply summing the values of the data points. The true

areas would be obtained by multiplication by the proper proportionality

constant.20

Area = prop. const. ° (kl + X, + X3+ ... XN 1] (A.2)

The results of any particular run are usually normalized; that is, the
percentage composition is calculated by measuring the area of each peak and

dividing the individual areas by the total area, e.g.,2]

y B = Area of B . 1q0 (A.3)
Total Area

The normalized calculations for all four runs are given in Table 2. The

agreement of the percentage ratio of each peak among runs is relatively good,

a4



even for the deconvolved results.

Areas of compounds are not directly proportional to the percentage compo-
sition, i.e., different compounds have different detector responses; therefore,
it is necessary to determine correction factors. Once determined, these cor-
rection factors can be used to calculate the percentage composition.22

In an attempt to determine some idea of the inherent

errors in the taking
of gas chromatographic data, ratios were taken of the peaks in Run 1 and com-
pared to the same ratios in ,Run 2 to see if there were significant differences.
Only Runs 1 and 2 were compared because the peaks were well separated here.
Although most compared quite well, one difference of 5 percent was observed.
This means that it is difficult to get a very exact error analysis.

Other methods of determining the amounts of material present from over-
tapped peaks are triangulation, peak height measurement, and the dropping of
a perpendicular at the lowest point of the valley between two peaks.23
Obviously, none of these methods could apply to the first two peaks of Run 5
as the peaks are almost completely merged. This leaves deconvolution as the
only method available for treating problems of this type. In Run 4 the first
two peaks are merged to such an extent that none of the above methods are
recommended.?? The perpendicular drop method will be investigated to get
some idea of the error involved. From Table 2 the ratio of Peaks 1 and 2 in
Run 4 results in a value of 2.47. Deconvolution gives a value of 1.57. The
ratio of the same peaks in Run 1 where the peaks are well separated is 1.64.
The ratio of the deconvolved peaks differs from the ratio of the same peaks
in Run 1 by 4 percent. The ratio from the perpendicular drop method differs

from the ratio in Run 1 by 51 percent. This is much larger than one would

expect from experimental error. In such cases one would prefer the
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TABLE 2

AREAS UNDER THE PEAKS
(Normalized)

Percentage Composition

Run 1 Run 2 Run 4 Run 5 Run 4 Run 5
Sample Mixture After Decon. Before Decon.
& Compound A 13.010 12.768 13.372 13.418 9.814
{33.840
Compound B 21.371 21.428 20.960 20.827 24.219
Compound C 33.856 33.470 33.082 33.115 32.125 31.950
Compound D 14.223 14.656 14.714 14,531 15.380 15.346

Compound E 17.541 17.678 17.871 18.108 18.462 18.865




|

deconvolved value if it were available.

Discussion of Results and Conclusion

One of the goals of this project was to develop methods for obtaining
a good deconvolution with a minimum of time and effort. This was achieved
in large measure by developing computer programs to handle all aspects of
the pfob]em and using INPUT statements to most conveniently vary the impor-
tant parameters.

Striving for generality was another goal. Working in the timesharing
mode and using FORTRAN exclusively will not be the methods everyone will use.
However, the programs will not be too difficult to adapt to the minicomputer
or other data handling machine the researcher may have. The methods used
here will not have general applicability. They would be most appropriately
applied to data where the deconvolved result would consist of a number of
quite distinct "peaks." However, in cases where the machine function is known
exactly, the concept of function continuation could probably be applied in
some sort of "iterative" process that converges to the correct result. Perhaps
the sidelobes could be identified to give a starting point.

The concept of function continuation in the frequency domain provides
a twofold advantage. Not only does it serve to improve the deconvolution
considerab]y, but, by examining the truncated artificial function, a basis for
determining how close one is to the attainable 1imit in a straightforward
deconvolution is obtained.

More work needs to be done in making good artificial functions as evidenced
by the crude matchup of coefficients. That the peak shapes are not gaussian

is obvious when the artificial function is overlaid over the deconvolved result.
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One needs to find some distributions that can be expressed algebraically
that c1o§e1y resemble the peak shape. Alternatively, the shape of the decon-
volved peaks may be changed slightly by changfng the shape of the machine
function. |

The shape of the machine function used in this investigation was obtained
by taking the top of a given peak as the origin, compressing the t-axis behind
this origin and expanding the t-axis in front of it. The amount of compression
and expansion was varied by inputting a value for the variable "c" in the
computer program. This was expressed in the program as (x+c*x), which is
algebraically the same as (c+1)x; c+1 is the Tinear factor of expansion
and compression. It took the value 1.4 for the deconvolution of Run 4 and
1.36 for Run 5. It is easy to see how this might be generalized to give the
t-axis any variable amount of expansion and compression, and hence give the
machine function and shape desired, by using a general polynomial in place
of this Tinear factor.

a+bx+cx?+dx3+ . .
The constants a, b, ¢, etc. are varied to give the results desired. A
different polynomial may be used for expansion from the one used for compres-
sion. Note that the expression above is a special case of this general
polynomial with b=c+] and a=c=d= . . . = 0.

Some of the programs are inefficient as far as computer time is concerned.
No attempt has been made to make them more efficient nor to write them in
more polished form. In particular, if it was all to be done over, the pro-
gram for the machine function would be rewritten using a guassian rather than
an isolated peak as a beginning function; thus eliminating the need for

interpolating between the points.
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APPENDIX A

DATA WINDOWS

Data windows will be discussed only qualitatively here. For a more
rigorous mathematical discussion, one is referred to the references.]]’]7’2$

The frequency and time transforms are very similar in form, differing
only by sign on the exponential term. The results obtained are nearly always
of the same form regardless of in which domain we begin initia]]y.26 Thus,

a data window will have essentially the same effect regardless of the domain
in which it is applied. It is better interpreted when applied in the time
domain so attention will initially be restricted to this.

A knowledge of Fourier transforms shows that the sharper points of a
function require high frequencies to represent it, an abrupt discontinuity
taking frequencies ranging to infinity. The Fourier series is periodic so
that if the function and its slope are not the same at its endpoints there
will be an abrupt discontinuity and the frequencies will range to the highest
ones present as the repeating series tried to join itself over the endpoint
values. These frequencies usually group around the major frequency components
making up the function and is referred to as "leakage" in the 1iterature.27
(See Figure 18.)

To more faithfully represent the frequency spectrum over the real, infinite

time domain would require a data window over a longer interval of time; the

wider the data window, the better the results. However, this is not often
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(a) Function and its slope not the same at the endpoints. Note the additional

frequencies introduced.

09

L

(b) Function and its slope the same at the endpoints. Transform is two
symmetrical spikes.
Fig. 18. Cosine function and associated transform with data taken over two

different intervals to illustrate leakage.



possible to realize in practice. Also if, by chance, the function and its
first derivative happened to be the same at both endpoints, these additional
frequency components would not be introduced. This happy situation seldom
occurs naturally, however, One may, in a sense, bring this about, however,
by extending the function at its endpoints in some smooth curve such that the
function and its first derivatives are smooth and continuous across this
region. Another way of reducing these additional frequency components is

by using a "data window."

Actually, the operation of taking data over a finite range is referred to
as applying a "rectangular" data window as it can be viewed as the multiplica-
tion of a rectangular function of unit height times the actual time function
over the real, infinite time domain.

Data windows are functions that decrease to zero outside the range over
which data is taken and are multiplied by the real, infinite time function.
They all usually have a value of unit in the center and fall off in a regular
manner to small values or zero at the endpoints. In all cases their purpose
is to make the function and its first derivatives smooth and continuous at
the endpoints.

Note that the frequency spectrum introduced by a sharp discontinuity
usually expresses itself in the form of "sidelobes" on both sides of the
function. (See Figure 19.)

Fortunately, the data in this research is not beset with the problem
of abrupt discontinuities. The data and its slope go smoothly to zero at
both ends of the data.

In the frequency domain, however, the researcher is confronted with

this abrupt behavior as the frequency spectrum is cut off at some point.
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(a) Rectangle function, II(x).

TN, 1////TR\\\ TN
— \/ N\ ; S

(b) Transform of rectangle function,

sinc Xx. Note the sidelobes.

Fig. 19. Rectangle function and its transform,

sinc x.
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As might be expected, sidelobes are obtained with the transformation to the

time domain. A data window has the effect of bringing the frequency function
and its slope relatively smoothly to zero or small values, and, hence, to reduce
the sidelobes. As the data window tends to narrow the function somewhat, the

effect in the transform domain is to broaden the peaks slightly. This broad-
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advantages of these windows. Also the shape of the peaks may be distorted
slightly.

The above statements, apparent for a single distribution, may not be so
obvious when the data consist of a number of peaks at differing locations.
But if one considers that the transform of a sum is the same as the sum of the
transforms (addition theorem) and that a shift in location means only multi-
plication of the transform by a "phase factor” of unit amplitude, then it is

easier to see how all the peaks will be affected in the same manner.
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APPENDIX B
THE DISCRETE FOURIER TRANSFORM

The complex Fourier series representation of a function defined over the

interval (0,2p) is given by:

f(t) =
n

Wi~ 8

Cn exp(nimt/p) (2.1)

[Slee]

where the complex coefficients, Cn’ are given by:

2p
1
¢, = 7 fof(t) exp(-nint/p)dt (2.2)

If only discrete data points are given the above integral can be

numerically approximated by a summation. Suppose there are N equally spaced

data points, Xk:

t = kAt NAt = 2p At = dt
C = — X exp — | At
n NAt k=0 k At
N—
2
N-1

1 .
N TR Xk exp(-ni2mk/N) (B.1)
If the data are band-limited, that is, the frequency spectrum does not
extend past a certain point, and if the sample point interval is smaller than
a half-wavelength of the highest frequency present, then no information will

be lost in taking the summation rather than the continuous integral in
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determining the coefficients.28 If the above is true, then more than N
terms need not be included in order to completely restore the original

function f(t).

N
> 1
f(t) = Y ¢ exp{nint/p) (B.2)
N
n = -
2
If discrete points are desired rather than a continuous function, this
may be written as:
N
2 ; nimkAt
X = C ex —_—
K - L . n p ) At
n =-- 2
2
L
X, = ) ¢ exp(ni2mk/N) (8.3)
n
n =-N
2

By considering the periodicity of the exponent and by noting that the deri-
vation of Cn from -N/2 to -1 is the same as from N/2 to N-1, it is apparent
that this expression may be written:
N-1
X, = Y C_ exp(ni2wk/N) (B.4)
n=0 "
The expression in this form is called the "inverse discrete Fourier transform"
and its companion:

N-1

c, = ]ﬁ kZO X, exp(-niznk/N) (B.5)
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the "discrete Fourier transform."

The equations expressed in this symmetric -form make it possible to write
only one computer program to handle both computations. One has only to change
the sign of the exponent and to consider the factor 1/N when doing the inverse
transform.

The fast Fourier transform, usually written FFT, is only a computational
algorithm to shorten the length of time over conventional methods in comput-

ing the discrete Fourier transform.27'29’30
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APPENDIX C

COMPUTER PROGRAMS WRITTEN TO PERFORM
FFT DECONVOLUTION

Due to the enormous volume of calculation involved, computer programs
were written to handle almost all aspects of the program.

The computer used was the Xerox Sigma 9 which operates under Control
Program V (CPV version E00). Most computing was done on the cathode-ray
terminals (time-sharing mode). The Tektronix 4010-1 graphics terminal and
a Calcomp 565 drum plotter were used to plot all graphs.a Al1 programs
were written in FORTRAN IV with the exception of two Xerox extended FORTRAN
options, the INPUT and OUTPUT statements. They serve as free form read and
write, respectively.

No subroutines were used with these programs. In the time-sharing mode
it was more convenient to use the SET statements of the terminal executive
Tanguage, especially in the earlier stages of the research when it was
necessary to examine the output of each program. It should not be difficult
for the programmer to adapt the programs to any system, however, with slight
modifications.

FFT deconvolution was implemented with these programs as follows:

First, a machine function was generated using either MACHFUN or TESTFUN.
Program TESTFUN generated data points from a gaussian distribution. The
height and width of the gaussian were varied by inputting two variables via
the INPUT statement. MACHFUN first read in data points from the 5th peak in

Run 1. Then by interpolating between the points the narrowness was varied in

a
Tommy Dearmond, personal correspondence.
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a continuous manner. The skewness was varied with one parameter by compres-
sing the function behind the peak and expanding the function in front of it.
The third parameter enabled the function to be shifted along the t-axis. This
has the effect of shifting the deconvolved output. This was necessary in order
that the program that builds the artificial function would not have "split"
peaks to contend with.

Next, a forward transform was taken of the machine function using program
FFPEAK31 to get its coefficients. Also, the forward transform was taken of the
data using FFPEAK.

These coefficients were read in program FGH and the coefficients of the
data were divided, one by one, by the coefficients of the machine function.
When applying a data window, this division is multiplied by a factor which
depends on the data window applied. See program FGHAM to see how a Hamming
window was applied to Run 5.

The coefficients obtained by division are read into FFPEAK and an inverse
transform is taken. The user is allowed to select the number of coefficients
wanted to go into the transform via an INPUT statement. The user can thus
cut off the frequency spectrum at any point and note which gives the best
deconvolution.

The real part of these numbers is read by program CALCOM and plotted.

(If the imaginary part of these numbers is very large, one should suspect
an error.) This is usually plotted along with the original data, and usually
the hybrid function and artificial function, in order to better compare them.

Program SUB is used to construct the hybrid function. Coefficients from
the artificial function are substituted in beginning at any desired point.

To use this program, input the number of coefficients of the original function
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that is wanted and the rest will be substituted from the artificial function.
An inverse transform of this is taken using FFPEAK. The result is usually
plotted along with the straightforward deconvolution in order to better
compare them.

ARTFN is the program that builds the artificial function. It reads the
deconvolved function and determines the location, height, and full width at
half-maximum of each peak. An artificial function is then constructed with
gaussian distributions having these parameters. This function may be plotted
directly using CALCOM. The forward transform is then taken using FFPEAK
to get the coefficients.

In coneluding, there is one point that needs clarifying. In some of the
praograms one, loosely, is asked to input the number of coefficients of that
number of terms of the lowest frequencies. With the exception of the first

coefficient, there are two coefficients that correspond to each wavelength.
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NAME = TESTFUN

THIB8 PRI3IaAM GENERATES DATA POINTS EF A RAUSSIAN
DISTRIBUTIAIN, THERE ARE TWO INPUTS, THE FJIRST
DETERMINES THE HEIGHT OF THE PEAK AND THE SECOND
DETERMINES THE WIDTH.

DIMENSIIN Y(256)

INPUT S, 1T

DO 1 1w1,25¢

Y(I)uSedEXPle(I=129¢)%525T)
1 CONTINJE

wRITZ(3,2)Y
2 FORMAT(10F540)

stTep

END
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NAME = MAZHFUN

GIVEN ANY INTTIAL SET OF DAYa POJNTS BF 4 PROSPECTIVE
MACHINE FUNCTION, THIS PROAGRAM, BY USING THREE INPUT
PARAMETERS, GIVES THE FUNCTION A CERTAIN AMOUNT OF
SKEmNESS, NAIROBWY AR HRECADEMS THE FUNCTION, AND SHIFTS
THE FUNCTION LATERALLY, IN THAT ORDER,

DIMENSION RUNIN(1028)sMF (256 )aRU{4024,
DATA 4F/0/
REA)(3%5511RUNIN

1 FORMAT(10F5.0)
INPJT C,8C,IBEGIN

THE FOLLIWING 81T OF ~280p CEMPRESSES THE XeAXIS BgHIND
THE PEAC, PBINT 433 IS AT THE TEP OF THE PEAK.

0O 2 Imt,41024=433
RU(CI+433)aRUNINIT*a33)
X=l
Ko INT{XeCuX)
RUNINII*e33)mi{ XaCP¥XaK)as (RUIK*RIS)
8=RU(K+833))1+RUIK+433)
2 CONTINJE

THIS BIT 3F CODE EXPANDS THE XaAXIS IN FRONT OF THE PEAK,

DO 3 Ia432,1,=1
Xoy33=l
Kmy33=INT(X+CaX)
IF(C,LT,1)RUNIN(I}=3;G8 TO 3
RUNIN{I)@RUNIN(K]} @l (X+CoXIoINT(XeCurX) ) ¥
S{RUNINIK) =RUNIN(K=11)
3 COonTIvUE

THE FOLLI4ING BIT OF ODE NARROWE AND SHIFTS THE FUNCTION

IT CAN S8TAIN DATA POINTE FOR ANY INCREMENT BY INTERPOLATING

BETWEEN THE POINTS,

vO 9 Je1,INT(1024/S0)
RI=]
K=aRI»SC
5 MFUI+IIRGINIWRUNINIKI+(RI*SCukK)®(RUNIN(K+1) aRUNINIK))
WRITE (36,4 }MF
4 FORMAT(10FSe0)
sSTOS
END
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NAME « FFpIax

THI8 PRINIAM COMPUTES THE FBRWARD OR INVFRSE FOURIER
TRANSFORM FBR ANY SEY CF DISCRETE DaTa PMINTS WHICH I8 AN
INTEGRAL PIWER OF TW8. INPUT =1. FOR A FARWARD TRANSFGRM
AND 1o FOR AN INVERSE TRANSFCRM, IF e1. 1S INPUTTED THE
PROGRAM WILL READ ANLY Rgal DATA POINTS AF A SET OF ANY
LENGTHs IF ¢, 1S INPUTIED THE PRUEGRAM wlLL READ ONLY
PRAOPERLY FIRMATYED COMPLEX NUMBERSe GIVEN ANY ARBITRARY
SET OF DATA, BE SURE T0 DIMgNSION THE PRBPER ARRAYS

T0 THE SMALLEST POWER GF TWE THAT WILL CANTAIN THE DATA.
THg REST OF THE VALUES IN THE ARRAY wILL Bg SET TO ZERG
T8 GIVE aN AGveRALL DATA FIELD OF LENGTH AN INTEQRAL PBWER
OF TWwO, SET NSTAGE TO THIS INTEGRAL POwWgR OF TuO,

AL§@, FIR THp INVERSE TRANSFORM YOU wiIlLL NegDl T8 INPUT
THg NUMBER OF COEFFICIENTS YOU W{SH; THg Rg8T WILL BE SET

NOTE: ALTHIUGH THE PRESENT ARRAYE ARg DIMeNSIONED 76 HOLO
10,4 DATA PBINTS, THE PROGRAM IS SET TO READ ONLY 286+

THIS FIRST BIT OF CODE 18 T8 FIL| THE ARRAYS.

oo aachona0con o0 onn

REAL®8 JATA(1024)/,CBEF(2,1024)
REALwg FLTN,PHI2N,SIGN,FLIN2JLTEMP
DOUBLE cOMPLEX WsX(2,1024)
DATA JATasz0/
INTESER R
NB8TA3Ew4ig
SIGNamge
Ne2suNSTAGE
IF{SI3N«GT«04168 10 33
READ(11277,END=66) (DATA(K) 7 Ku385,640)
77 FOR4AT{10FS5,.0)
66 00 22 I=1.N

22 X(1s1)a0CMPLX(DATA(L}sCe)
Ge T9 55

33 INPUT M
READ113+99)CBEF

99 FORMAT(D21¢,.16,2X,021.15)
DB 9 IwMetsNisq1aM
COEF(1:11m0,

9 COEF(2,1)1=0,
D8 &4 lei,N

4% X(1,1)%ICMPLX(COEF (1,11,COEF(Q,1 )

55 CONTINJE

ACTUAL CALCU ATION STARTS HERES

aooon

N2=nN/2

FLTNeN
PHI2NmG6epR3185307179586/FLTN
DO 3 Je1,NSTAGE

N2JaN/(288))

NRaN2J

NIe(as3J)/2

De 2 Tuwi,N]

Th2.lai Twa yuND |

62




oM

FLIN2J=IN2J

TEMPoF _IN2J»PHIZN®8IGN
WaDCMPLX(DCOS{TEMP),DSIN(TEMP])
06 2 A=1,nNR

ISUB=R+IN2J

ISUB1aR*IN2JIS2

1SUBasI8URy+N2J

1SU33=I5UB+N2
X{2515J3)mX(1,I8UBL1)+wWsX(215ISWB2)
X{2,I3J33)1wX(1,ISUB1)ewsx(1,16UB2)
CONTINJE

DO 3 RwisN

X{1sR)aX(2sR)

IF{SIGNeGT0.)36 TO &

DE & Rei,N

X{2sR)eX(1,R)/FLTN
WRITE(12,88)(X(2sJ)sJdm1aN)
FORMAT(I21+15%5,2X2D21+15)

sTOP

END
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NAME = F34

TH1S PRB5AM DIVIDES THE CUEFFICIENTS OF THE. TRANSFORM
OF THE 3IVEN DATA POINTS BY THE COEFFICIFNTS OF THE
MACHINE FJNCTIGBN TERM BY TERM TO GIVE THE COEFFICIENTS
OF THE JcIINVBLVED FUNCTIAN,

OOONOOn

DOUBLE COMPLEX F(1024),G(1024),H(102a)
READ (8,110
FARMAT(J21+15,2%9021015)
READ(3,3)H
FORYAT(D21 o155 2x,021 n15)
LB 5 I=s1,102%
Felrad(I17G¢l)
WRITZ(4026)F
¢ FORMAT(DJ24.15,2x,D21.15)
STOp
END

A& wn»
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NAME = CALCOM

TH18 13 THE PROGRAM THAT INITIATES THE PLOTTING ROUTINES,
IT WILL RcAD A9 MANY AS FOUR DIFFERENTY DaAYA FILES AND

PLBT THEM ALL ON ONE GRAPHe THERG ARE THREE INPUTB. FOR

THE FIRBT, INPUT EITHER A 13 OR A 101, & 13! IF YOU

WANT THE 9,TPUT 6N THE TEKTRONIX SCREeM, OR 'D1 IF YOy WANT
EUTPUT 9N THg CALCOMP PLOTTER. THE SECOND INPUY I8 A SCALING
FACTOR, 74 PROGRAM I8 DESIGNED 16 GRAPHM ALL NUMERICAL
VALUES IN INCHES, ALL NUMERICAL YALUES TIMgES THE SCALING
FACTOR dILL QIVE AS THg OUTPUT THIS PRODUCT IN INCHES. THE
THIRD INPJT I8 THE AMOUNT IN DATAPOINT UNITS THAT SOME OF
THg GRAPHS ARE @GHIFTED., THIS IS NegCgSSARY BRECAUSE A BHIFY
IN THE MACSHINE FUNCTION CAUSES A SHIFT IN THE BUTPUT. THIS
MUgT Bg ADJUSTED IN GRDgR 768 COMRARE IT wltH THg ORIGINAL
DATAS

DIMENSIOIN X{1028)sY(1024),YY(4024),2(1024)
REALwg EOVERV
CoM49N /7MADEL/ ITEK
INPUT ITEK,FCTR
CALL FACTBR(FCYR)
. EGVERV=O,
READ(15.5%)y
55 FORMAT(224¢15)
READ({17+111)2
111 FORYATII21.,15)
REAJD(16+662END=?7)YY
66 FCRMAT (10F5+0)
77 D00 11 l1e971,1024
14 YY{(l)=)e
INPYT 4
DO B Te1.4024
X{Il)aESYERV+,.5
YY({I)ayY( T)l-0°3¢50
Y({l)aY({I)ue026%10
2(1)mz(I)ne02642+5
100 IF(YY(I)eRTe10e)YY(TI)=9,
IF(YY(I)eLTe0e)YY(])=e00}
IF(Y(I)eGT410.)Y(1)m1C,
IF(Y{1)sLTe0e)Y{I)™s001
EOVERV®I/a0.
8 CANTINJE
CALL PLOTS(1,1,1)
CALL AXISB(5,0004HT 122600005802 00s10,8MF81)
CALL AXIB(45,00s4HG,15204090e2010500s1.54mF8,1)
CaLL PLOTIX{1),v(M),3)
DO 8B <»2,1024=M
88 CALL PLATIX(K)»Y(K+M=1),3]
06 22 <=1028=M,1024
22 CALL PLOT(X(K)s»Y(K+Mu1024)22)
CALL PL3TIXI4)22(1)23)
DG 99 «»2,1024=M
99 CALL pPLIAT(X(K)s»2({K+M=1)22)
08 35 <=1028=M,1024
9% CALL PLOTIXIK)S»Z(K+M=1024)42)
CALL PLOT(X(1)aYY(3)» )
08 &% (=2,102%
b CALL PLAT(XIK)sYY(K)Y)p)
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CALL LINEUX,Y,102%,1,%,.2,0)
CALL LINE(X,YYr1028,104502,0)
CALL stoPPLOT

5TOP

END
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00 00
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NAME = ARTFN

THIS PIBaRAM SCANB THE DATA POINTS 6F THWe DeCONVOLVED
FUNCTION AND DETERMINES THE PEAK HEIGHTS, LGCATIONs AND
THE FULL dIDTH AT HALF MAXIMUM 6F EACHe AN ARTIFICIAL
FUNCTION 15 THEN BUILT FROM GAUGBSIAN DIGYRIBUTIENG WITH
THE 8aAYc VJIMAER OF PEAKS, AND WIVYH HFEIGHMTS, WIDTHS, AND
LOCATIONS AS DETERMINED ABOVE

THE PEAS LOCATIONS AND WIDTHS ARE OGUTPUTTED IMMEDIATELY
T6 CHEZK FOR GROSS8 ERRORS.

DIMENSION PEAKFN(1024),HT(5),LOCIS)sLR(S)
DIMENSIIN LL(S)sWF(5)sWwiS)
READ (52+4)PEAKFN

4 FORMAT(D21.1%)

THE FOLLOWING 817 OF CODE DETERMIKNES THg PEAK HWEIGHT,
LOCATIIN, AND FuHM,

K=0
L=0
ISWe=)
D8 § 1s1,102%
IF(PEACFN(I)sLTe204)G0 TO 1
IF(PZACENILI) QT +PEAKFN{Iw1) e ANDPEAKFN{I) GT,
SPEAXKEN(I+4))LmL+1) 1SN HTIL)ISPEAKFN(T)]
slL8ciLral;jne TO 2
1F(I34+€Q:4)Q8 1O 2
GO T8 1
2 Kexéq
IF(PEASKFNIT) JLTWRTILI/2+)ILR(L)eKeay; IgWa0;Keg
1 ONTINJE
D8 7 1si,%
NeLOCII) =L R(])
D8 8 Jm1,9
IF(PEACFNIJ*N®I) BT eHT(I)/2) L (I)m R(1)42ey,
SHF (1) @e69315/((LRI1ISLLITII/24)%82,G8 TO 9
8 CONTINJE
9 WW(I)u R(I)eLL(D)
OUTPUT wwil)
BUTPJT LBC(I)
7 CBNTINJE

THE FOL.94INR BIT OF CODE BUILOS THE ARTIFICIAL FUNCTION
FREM GAUSSTANG

DB 6 Us1,1024
6 PEAKEN{IISHT(Q)IEXP(a{ = BClal1%82aWF{1))
$¢HAT (21 3EXP (e[ JnwlOC(2) tas24nF(3))
S+HT (3 )sEXP (= ( JulLBC(3,))8%28WF(3))
BANTUIRIBEXP (=t J=LBC(A) ) 2828 WF 1 2))
8+HT(S)IEXP(w{ J=lBC(5) ) us28uF (5))
WRITEZ(62:.5)PEAKFN
% FORMAT(10FS.0)
STOP
END
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NAME = S 3

TH1S P333aAM BUBSTITUTES COeFFICIENTS OF THE ARTIFICIAL
FUNCTIAON INT® THE TRANSFORM 6F THE DECONVOLVED FUNCTI®ON,
INPUT THg NUMBER OF COgFFICIENTS OF THE ARIGINAL

FUNCTION T7HAT YOU WANT AND THE REST WILL Bg AUTYOMATICALLY
SUBSTITJTEY FROM THE ARTIFICIAL FUNCTION,

11

22

33

L1

COUILE SOMPLEX HOUT(1024),HABUT(102%)
READ(1,11)HOUT
FORMAT(J21+15,2x2021+15)
READ(2,22)HHOUTY
FORMAT(021¢45,2X,021+15;
INPJT 4

D8 33 IsMe1,1025=M

HOUT (1) eHNBUT(T)
WRITE(3Js04)HAUT
FERMAT{J21+15,2%,021.15)
STap

END
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NAME = FaMAM

SRR

DOUBLE COMPLEX F(20281,G(10242,H(1024)
READ(8,11F

FORMAT(321.15,2X,021¢15)

READ(9,3H

FQR'Q‘T( J21+15,2%,021+15)

La 5 1=1,5%40
IF(1+GT+46)G(1)20;G(1006=11e0,G0 TO 5
GlI)w(e384e864Dc0S(30141592653589793,
S ((I=1)/765.))yu(H({1)/F (1))

Glq025%l 1 (*54+0468DCOS(3°141892653589793%
$11/%5,)1)1a(H{1025=])/F(1025=1))
CaNTINIE

WRITE(10,6)G

FORMAT(J21415,2X%s021415)

sTOP

END
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NAME o AREA

THIS PR93%aM FINDS THE AREAS UNDER THE PEAKS. THE ENDPOINTS
MUST BE DESTERMINED BY INSPECTIEN.

DIMENSI3IN A(S),DECEN(5030)
DATA a/2/
READ{72.6)DECSBN
6 FORMAT(10F540)
DB 1 1=1,470
1 A(1ll)=sA(1)+DECON(I)
DO 2 Ia%72,1120
2 A(2)ea(2)+DECHAN(I)
D8 3 I=19,142861
3 A(3)ea(31+DEgONIT)
D6 4 I1w2916,3770
4 A(4)=Aa(4)+DECONI(I])
DA 3 Iak0ag, 4960
5 A(S5)=a(5)+DECON(I)
D6 7 u1=1,Ss
7 WRITE(71:R)}JaA(J)
8 FORMAT(' ', 'AREA1(',11,')m!',F8,0)
GUTPUT +THESE RESULTS MUST BE MULTIPLIED BY THE
#PROPZR PRAPORTIONALITY CONSTANT TA GIVE CERRECT AREA!
ST0P
END
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