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CHAPTER I 

INTRODUCTION 

This research involves the use of deconvolution methods on gas chromato- 

graphic data to obtain an accurate determination of the relative amounts of 

each material present by separating the merged peaks. 

The underlying assumption implied throughout is that the area under the 

peaks is an accurate indicator of the amount of material present.' Due to 

uncontrollable errors at every stage of operation, this is never exactly 

true. However, it is a consideration that must always be borne in mind in 

designing, building, and operating the gas chromatograph, its detector, and 

other related equipment. As peak areas are less dependent on operating 

conditions than other methods, they are preferred by most researchers for 

accurate determinations. 2 

The promising new concept of function continuation in the frequency 

domain was introduced in striving to bring the art of deconvolution to its 

theoretical limit of accuracy. This proved only partially successful. 

The methods used here will have general applicability to any deconvolu- 

tion where the desired result consists of a number of well separated distrib- 

utions. 



Gas Chromatography 

Gas chromatography is an effective and widely used method for the 

separation of gases and volatile liquids or solids in the gaseous state. 

A small sample of the material being examined is injected into a stream 

of an inert gas such as nitrogen, hydrogen, carbon dioxide, argon, or helium 

which carries it into a column containing a suitable medium capable of retard- 

ing the flow, by varying degrees, of the individual components of the sample 

as they flow through the col,umn. Differences in the time various components 

remain in adsorption or partition on the material in the column is again the 

factor which makes separation possible. The separated components then emerge 

from the column at discrete intervals (characteristic of each component) and 

pass through some form of detector. As a general rule, gas analyses are 

carried out on adsorption columns (gas/solid chromatography), while liquids 

and volatile solids are separated on partition columns (gas/liquid chromato- 

9rw+JY).3 

The data used in the present study were obtained from a gas/liquid 

chromatograph. The carrier gas was helium and the detector was a Varian 1400 

flame ionization detector. The sample compounds consisted of five xylenes. 

The flame ionization detector is a differentiating type, making the 

area under the peak a suitable measure of the amount of material present. 4 

The flame ionization detector operates on the principle that the 

electrical conductivity of a gas is directly proportional to the concentration 

of charged particles within the gas. Effluent gas from the column is mixed 

with hydrogen and burned in air. Ions and electrons formed in the flame 



enter the electrode gap, decreasing the gap resistance, thus permitting a 

current to flow in the external circuit.5 

The flame ionization detector is extraordinarily insensitive to air and 

water, making it especially suitable for the analysis of air pollutants or 

aqueous samples such as beverages, biological materials, and other liquids. 

For other materials the areas obtained must be multiplied by the proper 

correction constant to obtain the true proportions. 6 

The flame ionization detector has the widest linear range of any detector 

in common use. 7 

The analog output of the gas chromatograph was digitized by bringing its 

output into the HP2100 minicomputer. Data were acquired at a 10 hz rate.8 

Electronic digital integration was accomplished by accumulating the 

data points when an increase in signal was detected and terminating when the 

signal again increased, which, incidentally, began a new count. 
9 

Temperature programming was used on the substances making up this data. 

The temperature was increased at a linear rate different for each run." 

The Data -- 

Data are given for five runs. The same sample composition, consisting 

of five test substances (see Figures 1 and 2), was injected each time. The 

graph of Run 3 was not included as nothing new of significance was illustrated. 

Each run was taken at a different temperature. See Table 1 for specifications. 

The interval between each data point was quite small compared to the 

standard deviation of the narrowest peak, thus making the data suitable for 

application of the fast Fourier transform. 

3 
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Fig. 1. Data of the first two runs: (a) is data of Run 2, (b) is data of 

Run 1. 



Fig. 2. Data of the last two runs: (a) is data of Run 5, (b) is data of Run 4. 
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TABLE 1 

GAS CHROMATOGRAPH SPECIFICATIONS 

Temperature Programming -_- 

Run 1 Run 2 Run 3 Run 4 Run 5 

Beginning 
Temperature 

Rate of 
Change 

500 75O loo0 135O 150° 

4'/min. 4O/min. 4'/min. 6O/min. 6'/min. 

G.C. Parameters 

100 mv input = 1 v output 

He 20 cc/min. Slope sens. 0.01 up; 1.0 down 

H2 30 cc/min. Zero delay 

Air 300 cc/min. Noise suppression 3 

Injection 0.75@ 22A Area threshold 1 
Shoulder control on (front) 
rear 0.1 



An inspection of the data points and its graph reveals that it is 

relatively smooth and free from noise. 

The tic marks, quite noticeable on the graph, were imposed on the 

data whenever the integrator encountered any increase in the signal. Removing 

the tic marks was quite easy. Graphs were drawn which included a few points 

on both sides of the tic marks. A smooth curve was drawn through these 

points. Intermediate points were then taken from the graph and replaced 

those of the tic marks on the data. The interval was small and the data was 

digitized so that this method was sufficiently accurate for the purpose. , 

The baseline drift is negligibly small and the baseline will be taken 

at zero. 



CHAPTER II 

The fast Fourier transform is a computational algorithm for calculating 

the discrete form of the complex Fourier series. (See Appendix B for a 

discussion of the discrete Fourier transform.) The addition theorem, shift 

theorem, convolution theorem, and other theorems familiar to users of the 

continuous Fourier transform with infin ite limits may also be deve loped for 

the complex Fourier series. 

The complex Fourier series, defined over the interval (0,Zp) for any 

arbitrary function, f(t), is given by: 

FAST FOURIER TRANSFORM DECONVOLUTION 

f(t) = T C, exp(niWp) 
n=dn 

(2.1) 

where the complex coefficients, c,, are determined from: 

f(t) exp(-nint/p)dt (2.2) 

The addition theorem may be stated as follows: 

If Cnl and Cn2 are the nth coefficients, respectively, of fl(t) and 

f2(t). then the nth coefficient, C,, of f = fl + f2 is Cnl + Cn2. 

Proof: 

f(t) exp(-nint/p)dt 

8 



c,= L 
2P 

2P I 
[fl(t) + f2(t)] exp(-niWp)dt 

0 

c,= 1 
a 

2P I 
fl(t) exp(-nint/p)dt 

0 

2P 

+$I 
f2(t) exp(-nint/p)dt 

0 

'n = C,l + c 
n2 

(2.3) 

The shift theorem will be derived next. 

If the function is shifted by an amount a, the coefficients will be 

changed as follows: Let these coefficients be distinguished from the previous 

coefficients by primes. 

/ 1 
2P 

'n= 2p I 
f(t-a) exp(-niWp)dt (2.4) 

0 

c; = r 2P 

2P I 
f(t-a) exp(-nina/p) exp(nina/p) exp(-niWp)dt 

0 

2P 

2p exp(-nina/p) l f(t-a) exp(-ni (t-a)/p)dt 
0 

Change variables: Let x = t-a dx = dt 

2p+a 

c;= &- exp(-nina/p) I f(x) exp(-ninx/p)dx 

a 
(2.5) 



Consider the integral in Equation (2.5). 

2p+a 

f 

2P 
f(x) exp(-nirx/p)dx = f(x) exp(-ninx/p)dx 

a 

2p+a 

+ I f(x) exp(-nirx/p)dx (2.6) 

2P 

The complex exponential repeats itself after every interval of Zp, and its 

value from 2p to 2p+a is the same as its value from 0 to a. If f(x) is a 

periodic function of period Zp, then its value from 2p to 2p+a will also be 

the same as from 0 to a (the shift theorem will only be applied to functions 

with this property). We may then write Equation (2.6) as: 

2P 

I 

a 
f(x) exp(-ninx/p)dx + 

I 
f(x) exp(-ninx/p)dx 

a 0 

2P 
= 

r 
f(x) exp(-ninx/p)dx (2.7) 

Substituting this result in the integral in Equation (2.5): 

Ci = & exp(-nina/p) 
2P 

f(x) exp(-ninx/p)dx 

0 

CA = exp(-nina/p) f(x) exp(-ninx/p)dx 1 
CA = exp(-nina/p)C 

n (2.8) 

10 



Thus the nth coefficient for the shifted function can be obtained simply 

by multiplying the coefficient of the unshifted function by the phase factor 

exp(-nina/p). 

With this result the convolution theorem for complex Fourier series may 

be derived. 

The data given are assumed to be a convolution of resolved peaks with 

some "machine function" that causes a spreading and "smearing" of the peaks 

together. The complex coefficients, then, are the transform of this con- 

volution: 

exp(-nirt/p)dt (2.9) 

where g(t) is the machine function, and f(t) is the assumed form of the data 

before convolution. Let Ch 
n 

denote the coefficients of the data, Ci the 

f 
coefficients (transform) of the machine function, and Cn the coefficients 

(transform) of the deconvolved data. 

Note that the continuous integral was used rather than a discrete sum 

as of the discrete series. This is because the actual convolution was 

assumed to be a continuous process. Actually, as long as we have sufficient 

data points, the results of both methods should be essentially the same. 

The integral permits convenient mathematical manipulation. 

Assuming sufficient continuity so that the order of integration may 

be interchanged: 

- 

ch= 1 
2P 

2p I 
f(x) 

n 
0 

2P 

I 
g(t-x) exp(-nint/p)dt 

0 1 dx 

11 



Applying the shift theorem: 

Ch = 
2P 

I 
f(x) exp(-nirx/p) g(t) dx 

n 0 

f(x) exp(-nirx/p)Ci dx 

2P 
Ch = 1 

n Cn92P 2p 
I 

f(x) exp(-nirx/p)dx 

0 

Ch = 2pC9Cf n nn (2.10) 

The product of the coefficients of the original function and the machine 

function multiplied by the constant factor, 2p, gives the coefficients of the 

convolved function. When all that is given is the data and some machine 

function, and the separated peaks are desired, Equation (2.10) is usually 

written in the form: 

f 1 ck 
'n= 5 J- 

n 

(2.11) 

The coefficients of the separated peaks may be obtained by dividing the 

coefficients of the data by the coefficients of the machine function and 

multiplying by the constant factor 1/2p. Transforming to the time domain will 

give the resolved peaks. This process is known as "deconvolution". It should 

be apparent that there is no unique set of coefficients that will satisfy this 

equation. The coefficients of the machine functions used in this research 

die out rather quickly at the higher frequencies and are essentially zero over 

most of the spectrum. Assuming CL is zero in these regions, we have the 

12 
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indeterminate case and almost any spectral function given for these regions 

where Ci is zero added to the unique determination C$Ci where Ci is not zero 

will satisfy Equation (2.11). One important particular solution gives Ci = 0 

when Ci = 0. This is known as the "principal solution" as given by Bracewell 

and Roberts. 12 

Note here that a single isolated peak for the case of gas chromatography 

cannot be taken for the machine function as it is not the response of an im- 

pulse; it is the response of one of the original resolved peaks "smeared" by 

the machine function to give the data. It is not possible nor desirable to 

assume the original input were "spikes." The sidelobes quickly become formid- 

able as the peaks become sharper. (See Appendix A for a discussion of sidelobes.) 

In accordance with the hypothesis that the area under the peak is proportional 

to the amount of material present, the deconvolution needs to be carried only 

to the point of barely resolving the peaks, hence the assumption that the orig- 

inal distribution of material before "smearing" was in the form of barely 

resolved peaks. 

Of course, one realizes that the form of the convolution integral is 

obtained by considering the original input peaks to be broken up into infin- 

itesimal "impulses," each one of these giving rise to infinitesimal "machine 

functions" positioned in a continuous manner on the t-axis and that summing 

all these together gives the data. 
13 

A first guess at a good machine function, then,might be one of the same 

shape as an isolated peak, but much narrower; more specifically, if an isolated 

peak can be expressed in some functional form, g(t), then a machine function 

of the form g(at) would be tried, where a must be greater than one. This was 

tried with only moderate success. The best results were obtained by taking 

13 



this function and giving it more "skewness." The assertion that this function 

is a good machine function has no firm foundation in theory as will be discus- 

sed subsequently. First, the linearity and shift-invariance of the apparatus 

will be discussed. 

The flame ionization detector is linear over a wide range. Stated 

mathematically, one would say that for certain amounts of different gases run 

through the chromatograph singly and forming the distributions: 

fi(t), f2(tL f3(tL etc., then differing amounts of these same substances 

run through the machine together would form the composite distribution: 

afI(t) + bf2(t) + cfB(t) + . . . 

regardless of whether or not they were overlapping. The constants a,b,c, etc., 

are determined by the proportions of the substances in the sample. 

Even a cursory examination, however, reveals that the distributions are 

not shift-invariant. Being shift-invariant means that for an amount of gas 

coming out of the tube earlier or later than a given gas should have the same 

shape as that gas. To state this more explicitly, if the distributions are 

shift-invariant, then for an arbitrary distribution of functional form f(t), 

any other distribution could be expressed in the form c,f(t-c,), where c 
1 

and c are constants. An examination of the data shows that the peaks seem 
2 

to be all of the same form but that the ones coming out earlier are narrower 

than those coming out later. Measurements show that the widths at half-max- 

imum become larger in a continuous manner as one goes from left to right in the 

data. This lack of shift-invariance will affect the accuracy of the results 

only slightly. This will be discussed in more detail subsequently. 

Taking the area under each peak as a measure of the amount of each 

material present, how this area would be changed, if any, under deconvolution 

14 



needs to be investigated. To look at this problem in its simplest form, free 

of all nonessentials, consider two isolated peaks of any arbitrary shape and 

size. The areas of each would be given by, respectively: 

2P 2P 

I f, (t)dt and I f,(t)dt 
0 0 

The ratio of their areas would be: 

2P 

I 
f,(tMt 

0 

2P 

I 
f,(t)dt 

0 
Convolving each of these functions with some arbitrary machine function, g(t), 

would yield: 
2P 

h,(t) = 
I 

f,(t)gb-t)dt 
0 

for fl(t) and an expression of similar form for f2(t). The ratio of the 

areas after convolution would be: 

2P 7 
I 

hl (x)dx 

0 

2P 

I 
h,b)dx f,(t)g(x-t)dt dx 

0 
1 

(2.12) 

As they are both of similar form, only one expression will be considered. 

15 



1 r[ f;(t)g(x-t)dj dx = 1 fi(t) (1 ,(x-t,.). 

The expression on the right was obtained by interchanging the order of 

integration. The integral over g(x-t) will be a constant as it gives the area 

under g which will remain the same regardless of how much it is shifted along 

the axis by t. Let this integral be denoted by K. A similar result will be 

obtained for h,(t) and Equation (2.12) may be written: 

2P 

I 
h,(t)dt 

0 = 
2P 

I 
h,(t)dt 

-0 

2P 

I 
h, (t)dt 

0 
= 

2P 

I 
h2 (t)dt 

0 

2P 2P 

I 
f,(t)Kdt 

KS 
fJt)dt 

0 0 

2P = 2p 

I 
f,(t)Kdt f2 (t)dt 

0 

2P 

I 
f, (t)dt 

0 

2P 

I 
f2 (t)dt 

0 

(2.13) 

and the same ratio of areas as before convolution is obtained. Thus the 

same ratio of peak areas will be obtained under deconvolution. The case 

where the peaks are merged needs to be considered. It should be apparent 

after a little thought that if two or more peaks of unknown shape are 

merged there is no possible way to determine how much of the smeared together 

area to assign to each distribution. This situation is actually no different 

from the one where the peaks are well separated, but only more vividly illus- 

trates the problem. The deconvolution process requires closer examination. 

16 



From the convolution theorem, the coefficients of the deconvolved 

function are given by: 

Suppose the areas are arbitrarily assigned under two smeared together peaks 

and the complete function written as the sum of two others: 

h(t) = h,(t) + h,(t) 

By the addition theorem the transform would be: 

Ch = Ch t Ch 
n "I n2 

where C," and Ch are the transforms of hi(t) and h,(t), respectively, 
n2 

Dividing'this by the transform of the machine function, we get the coefficient 

of the deconvolved function. 

Ch c,‘= 1 n = h 
c;, + Ch 

n2 Ch G, 

2P C; g = 
Lnl+l- 

cn 2P C; 2P C," 

Taking the inverse transform and making use of the addition theorem, we get 

for the deconvolved function: 

f(t) = fl (t) + f&J 

where f,(t) and f2(t) are the deconvolutions of hi(t) and h,(t), respectively. 

Suppose the areas under the peaks were assigned such that two other quite 

different functions are obtained. 

h(t) = h,(t) + h,(t) 

17 



After deconvolution the result obtained is: 

f(t) = f&l + wt) 

The deconvolved result is the sum of two quite different distributions. This 

is not a contradiction; only one result is obtained. For instance, if f, 

and f, were both zero on some region of the t-axis and f3 was negative a 

certain amount and fr, was positive by the same amount, then f, + f4 would 

equal zero in that region as would f, + f 2, giving the same result in each case. 

Of course, the areas under each of these distributions would in general be 

different, so that if one didn't know the shapes of the two original peaks 

before smearing, then there would be no way of determining the correct areas. 

However, if the correct shapes of the peaks were known, even if they were 

smeared together, then one could deconvolve them and know how much area to 

assign to each peak by examining the deconvolution of each peak separately. 

For this particular problem it is known within narrow limits what the 

peak shapes should be. All are reasonably uniform except for small variations 

in narrowness. If, then, a machine function can be found that gives an 

isolated peak a deconvolution with small negative regions, and if the decon- 

volved peaks all have similar form, then one may accept the results with a 

high degree of confidence. The requirement of small negative regions for the 

deconvolved peaks is if the deconvolution gives well separated peaks with no 

negative regions, then there will be no problem of cancellation of the area 

of adjacent peaks by these negative regions and hence there will be no problem 

in assigning the areas under the peaks. 

For the sake of completeness, a deconvolution of a linear, shift-invariant 

set of data will be included. 

Any number of distributions making up the data could be expressed in the 

18 



following functional form: 

H(t) = ah(t-tl) t bh(t-t2) + ch(t-tg) + . . . (2.14) 

where a, b, c, etc., tl, t,, tf, etc., are constants. Apply the convolution 

theorem, and employ the addition and shift theorems: 

CH 
rF 1 n = - 

a exp(-nint,/p) Ci + b exp(-nirrtz/p)Ci t . . . 
-= _ 

-n 2P Cg 
n 2PCi 

CF = 
n 

Ch 
a exp(-nint,/p) + b exp(-nintz/p) + . . 1 n 

2p 
(2.15) 

where C", is the transform of h(t). Transforming back to the time domain would 

yield the expression: 

F(g) = af(t-t,) + bf(t-t2) + cf(t-t,) + . . . (2.16) 

where f(t) is the deconvolution of h(t). 

So, if a machine function can be found that gives a minimum of negative 

regions for the deconvolution of an isolated peak, then the correct deconvo- 

lution of the data will give peaks all of the same shape, differing only in 

their heights. Note also that the location of the peaks will remain unchanged 

under deconvolution. 

19 



CHAPTER III 

DECONVOLUTION OF GAS CHROMATOGRAPHIC DATA 

The general method of performing deconvolution is as follows: One must 

initially obtain a suitable apparatus function. A transform is then made of 

this machine function and of the data. The transform of the data is divided 

by the transform of the machine function. Equation (2.11) is used for this. 

(2.11) 

These coefficients are then transformed back to the time domain to give the 

resolved peaks. The small imaginary part of these figures is due to calcula- 

tions roundoff and can be neglected. 

If the entire transform after division is transformed back to the time 

domain, the result, quite apparently, is nonsense. An inspection of the trans- 

forms reveals why this is the case (see Figure 3). Note from the graphs of 

the machine function and the data that the coefficients of the lower frequen- 

cies are the only appreciable ones (see Figure 4). They begin rather large 

at the lowest frequencies and fall off in a regular manner. It is apparent 

in nearly all cases that if this trailing off of the function were extrap- 

olated into the "noise" it would approach zero rather quickly, certainly in 

all cases before at most a hundred coefficients were taken. The coefficients 

falling to zero this quickly reveal that no information contained in our data 

was lost, getting at least two points per wavelength on the highest frequency 

present (see Appendix B where the sampling theorem is discussed further). By 

its relation to the continuous Fourier transform, it is apparent that the 

20 



Fig, 3. Graph of the real parts of the complex numbers that result from divi- 

sion of the coefficients of the data by coefficients of the machine function. These 

coefficients are truncated at some point (see arrows) and transformed back to the time 

domain to give the deconvolution. 



I I 

I’ b 

Fig. 4. Graphs of coefficients of the data and two machine functions: (a) is 

graph of real part of complex coefficients of the machine function, (b) is real part of 

coefficients of data, and (c) is real part of coefficients of a gaussian function (not 

centered at zero). 



envelope of the transforms of gaussians are gaussian also and would fall to 

zero rather quickly.14 However, one notes by examining the transforms that 

a small residual "noise" extends the whole length of the spectrum. This is 

due to machine roundoff in the computer, noise and error in the original data, 

and digitizing of data. This noise seems to be completely random and as much 

positive as negative, so it is not necessary to raise or lower the spectral 

function to some "baseline." 

Digressing for a moment, the data and the manner in which it was recorded 

should be considered. Due to the mechanical and electrical properties, all 

recording instruments have a "smoothing" effect on the recorded data. Speaking 

in terms of the Fourier transform, one would say that the higher frequencies 

are filtered out. As discussed in the introduction, the area under the peaks 

is an accurate but not exact measure of the amount of material present. If 

the data were not smoothed and the recorder accurately measured the amount 

of material passing through an arbitrary cross section of the tube at every 

instant of time, the data would show statistical fluctuation due to the 

thermodynamic nature of the variables concerned. The smoothed data recorded 

is some sort of "average" of these statistical fluctuations and the error 

involved would in most cases be smail compared to other inherent errors. 

Thus, for the purpose of taking the area under the peaks, the smoothed, or 

"bandlimited" form for the data and the deconvolved peaks will be sufficiently 

accurate for the purpose. If this is the case, the principal solution for 

deconvolution will be the correct solution. Practically, the presence of noise 

complicates the situation. The true spectrum of the machine function and its 

associated deconvolution buried in the noise will be unknown. This will 

necessitate truncation of the spectrum at some point before the true value of 

23 



Ci becomes zero. 

The reason the noise assumes such significance is because of the division 

of one frequency spectrum by another. One may accept with confidence the 

results in the region where both coefficients are appreciable. However, in 

the region of the noise, this division, due to the random nature of the noise, 

can give rise to enormous numbers. Note from the graph that the largest numbers 

are in this region. These results are completely meaningless and can quickly 

overwhelm the correct values if very many coefficients are taken as one extends 

into this region (see Figure 14). The results obtained when the dividing func- 

tion is small represents one of the largest problems encountered in practical 

deconvolution. It is quite apparent that these frequencies must be "cut off" 

before getting very far into this region. This is referred to as "window 

closing" in the literature. 
15 

Various methods of dealing with this problem have been suggested. Some 

merely accept the results as they are, taking it as being accurate enough for 

their purposes. Others, desiring more accurate results, employ the use of one 

of the many "data windows" available (see Figure 5). 16¶ l7 (See Appendix A 

for a discussion of data windows.) 

A Hamming window was applied in the frequency domain with only moderate 

success (see Figure 6). Most of the problem was due to widening of the trans- 

formed peaks. Such a strong deconvolution had to be taken in'order to offset 

this widening that some distortion was introduced. There was no improvement 

over deconvolution with window not applied. Other workers in the field have 

used data windows, however, with some measure of success. 18 

A data window, however, is an artificial device and its determinations 

only fortuitously resemble the original function because of its reduction of 
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y-k,, 

A=.08+.46(1-cos2rt/T) for 
t=O to T 

A=1-6(2t/T-1)2+612t/T-l/3for t= 
T/4 to 3T/4 
A=2(1-12t/T-11)3for t=O to T/4 
and t = 3T/4 to T 

Fig. 5. Four common data windows. Data is taken over the interval (0,T). 
(a) Rectangle. (b) Extended cosine bell:. (c) Hamming. (d) Parzen. 
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Fig. 6. Deconvolution with Hamming window applied compared to straightforward 

deconvolution: (a) is data of Run 5, (b) is deconvolution with Hamming window 

applied, (c) is deconvolution with function continuation, and (d) is straightforward 

deconvolution. 



the sidelobes. The peak shape is also usually changed slightly. To achieve 

any substantial improvement in deconvolution, more precise information about 

each particular problem is needed. Specifically, if one knew exactly what the 

coefficients were supposed to be beyond the point of cutoff, the perfect 

deconvolution should be obtained with no sidelobes. A measurement of the wave- 

length of the sidelobes showed that it corresponds closely with the wavelength 

of the cutoff frequency. This suggested that the sidelobes and other distortion 

were possibly caused by "cutting off" the frequencies at this point. However, 

this turned out to be only partially correct. Most of the error was found to 

stem from a poor choice of the machine function. This will be discussed later. 

For the following discussion, the assumption will be that the deconvolution 

was performed with some "ideal" machine function. This was realized in 

practice, to a large extent, by later deconvolutions. 

Even with a good machine function, truncation of the frequencies will 

cause error; there will be sidelobes. The main thrust of the ensuing argument 

is that if a function could be found which resembled the deconvolved function 

closely enough, such that the coefficients matched up with the coefficients 

of the original deconvolved function, especially in the region close to the 

point of cutoff, then the coefficien.ts should be close in numerical value to 

what the coefficients of the original function would have been had they not 

been cut off. To test this hypothesis, an artificial function was built from 

gaussian peaks of the same height, location, and width at half-maximum as the 

deconvolved function (see Figures 7 and 8). The transform was taken and the 

frequencies were cut off at the same point as the original function to see what 

effect this would have. The results were very encouraging. The sidelobes 

appeared at the same positions as the original deconvolution and had almost 
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Fig. 7. Deconvolution with function continuation compared to straightforward 

deconvolution for Run 4: (a) is data of Run 4, (b) is artificial function, (c) is 

deconvolution with function continuatio;, and (d) is straightforward deconvolution. 
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Fig. 8. Deconvolution with function continuation compared to straightforward 

deconvolution for Run 5: (a) is data of Run 5, (b) is artificial function, (c) is 

deconvolution with function continuation, and (d) is straightforward deconvolution. 



the same amplitude. This indicated that most of the error remaining in 

the deconvolved data was due to the act of "cutting off" the frequencies. 

Coefficients of the artificial function were then substituted into the 

original transform from the point of cutoff on. The transform was then a 

hybrid with all of its original coefficients up to the point of cutoff, and 

with coefficients from that point up to a hundred coefficients "grafted" from 

the artificial function. The rest were set to zero as they originated in 

noise anyway. Transforming back to the time domain to observe the results: The 

results were very good for Run 4 (see Figures 7 and 9). The amplitude of the 

sidelobes were reduced by more than half. The results from Run 5 were not 

quite as impressive, only slight improvement being gained. However, the 

coefficients after forty-six terms do not contribute much "ripple" anyway 

(see Figures 8 and 10). A little more work on the machine function is probably 

needed here. 

More work needs to be done in obtaining a good artificial function also. 

The matchup between the coefficients of the artificial function and the actual 

function was crude (see Figure 11). This suggests a more fundamental dif- 

ference between the two than a comparison of the data reveals. Encouragingly, 

though, the match was as good in the region close to the cutoff point as at 

any other region. The actual peaks were different from guassians in that they 

were narrower close to the base. A promising field of research would be the 

investigation of the efficacy of various peak shapes for artificial functions 

in deconvolution. One item that needs to be pointed out here is that the 

artificial function should resemble the original deconvolution after cutting 

off its frequency spectrum, not before. This would involve some adjusting 

as the solution is converged to. At any rate, the match worked well enough 
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Fig. 9. An enlarged view of the first three peaks of 
Run 4: .(a) is data of Run 4, (bj is artificial function, 
(c) is deconvolution with function continuation, and (d) is 
straightforward deconvolution. 

Fig. 9. An enlarged view of the first three peaks of 
Run 4: .(a) is data of Run 4, (bj is artificial function, 
(c) is deconvolution with function continuation, and (d) is 
straightforward deconvolution. 
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Fig. 10. An enlarged view of the first four peaks of 

Run 5: (a) is data of Run 5, (b) is artificial function, 

(c) is deconvolution with function continuation, and (d) is 
straightforward deconvolution. 
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Fig. 11. Coefficients of the artificial and deconvolved function. 

"HOUT" contains the coefficients of the deconvolved function and "AROUT" 

contains the coefficients of the artificial function. 
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Also, there is no reason why substitution of coefficients should begin 

at the point of cutoff. More and more coefficients from the artificial function 

may be substituted until a more desirab1.e result is obtained (see Figures 12 

and 13). However, one must keep in mind in this case that the final peaks will 

take on more of the character of the artificial funct ion. 

Finding a good machine function will probably be the largest problem 

encountered. A gaussian for the'machine function was easiest to implement, but 

left curious "shoulders" on the right side of some of the peaks, giving the 

impression that there were additional peaks that could be revealed by taking 

a stronger deconvolution. This was highly unlikely, however, as there was no 

other evidence for this. It was suspected that the shoulders were due to not 

considering the skewness of the peaks. 

in practice to considerably improve Run 4. 

In the next attempt, several isolated peaks in Runs 1 and 2 were tried 

as machine functions. Narrowing the peaks was easy to implement in a computer 

program by selecting every other, or every third data point, or some other 

interval. Interpolation between the points was introduced later to obtain 

a finer gradation. The amount of resolution desired in the final deconvolution 

is obtained by adjusting the narrowness of the machine function. 

However, only small improvement over a guassian was gained by using 

isolated peaks (see Figure 14). It was apparent that a function with more 

"skewness" was needed. There are several functional forms, all referred to 

generically as "skewed gaussians" that have been used successfully by other 

workers in the field. 19 The method used with success in this research was to 

choose an isolated peak, which was close to the desired shape anyway, and give 

it an additional "skewness" (see Figures 7 and 8). This was accomplished 
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Fig. 12. Comparison of two different cases of func- 
tion continuation for Run 4: (a) is data of Run 4, (b) is 
deconvolution with function continuation (20 to 100 coeffi- 
cients substituted from artificial function), (c) is decon- 
volution with function continuation (35 to 100 coefficients 
substituted), and (d) is straightforward deconvolution. 
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Fig. 13. Comparison of two different cases of func- 

tion continuation for Run 5: (a) is data of Run 5, (b) is 
deconvolution with function continuation (37 to 100 coeffi- 
cients substituted from the artificial function), (c) is 
deconvolution with function continuation (47 to 100 coeffi- 
cients substituted), and (d) is straightforward deconvolu- 
tion. 

38 



t- -I 
II 1 I I I I I I II I, I, I ,I, I, I ,I, I ,.I ,I, I ,I ,I 1 

Fig. 14. Deconvolution with ,a gaussian and an isolated peak as machine 
function. Also distortion in deconvolution introduced when too many coefficients 

are taken: (a) is data of Run 4, (b) is deconvolution with coefficients truncated at 
60 coefficients (distortion is considerable, (c) is deconvolution with 5th peak in 
Run 1 as machine function, and (d) is deconvolution with a gaussian as machine function. 



as follows: Taking an origin at the center of the peak, the function was 

compressed behind the origin and expanded in front of it, the compression 

and expansion being accomplished by only one factor (see Figure 16). A com- 

puter program was written to implement this and also to adjust the narrowness 

of the peak. By using a convenient feature of Xerox extended FORTRAN, the 

INPUT statement, three parameters were input after the program was run which 

seemed to be the only ones necessary for good deconvolution. The first input 

controls the narrowness, the second adjusts the skewness, and the third shifts 

the function either left or right on the t-axis. Various combinations of 

these parameters are tried until a good deconvolution is obtained. What 

constitutes a "good" deconvolution is more fully discussed in Chapter II. If 

the sidelobes are comparable in size to that obtained from the artificial 

function when its coefficients are truncated at the same point, then one has 

good reason to believe that a limit has been reached beyond which one cannot 

go without using function continuation. 

Also, one should keep in mind that a good deconvolution may not be unique. 

To reiterate, a "good" deconvolution for the purpose of gas chromatography is 

one in which the area associated with the deconvolution of an isolated peak 

is coalesced into one well defined "peak" and the negative regions are small 

so that there will be no problem in assigning the areas under the peaks. 

There may be a number of machine functions and their associated deconvolutions 

that satisfy these criteria. 

An important consideration is that a good deconvolution seems to depend 

critically on small irregularities in the machine function (see Figures 15 

and 17). Note from Figure 15 that when the machine function that drops to 

zero in the skewed portion is used, the graph of the deconvolution has larger 
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Fig. 15. Comparison of a smooth machine function to 
one with a sharp discontinuity. On left is machine function 
as program MACHFUN outputs it. Note the dropoff in the tail. 
On right is corrected machine function. 

Fig. 16. Comparison of a skewed with an unskewed 
machine function. On right is 5th peak in Run 1. On left 
is same peak with "skewing." This was'machine function 
used for Run 4. c = .4 for this peak. 
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Fig. 17. Effects of irreg.ular machine function on 
deconvolution: (a) is data of Run 5, (b) is deconvolution 
with irregular machine function (left peak in Fig. 151, and 
(c) is deconvolution with corrected machil:e function (right 
peak in Fig. 15). 
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sidelobes and shows more distortion than the case where the machine function 

is continued in an approximately linear fashion to zero. 

To obtain a good deconvolution involves a certain amount of trial and 

error. An inspection of the outputs at each stage is usually necessary. 

Once good deconvolved peaks were obtained, the areas under the peaks 

were acquired by numerical integration. Because of the sidelobes there were 

usually small negative regions on both sides of the peaks. The areas under 

the peaks were obtained by integrating between these negative regions as no 

other methods were known for accurately treating this particular situation. 

The suspicion is that if the sidelobes did not exist the peaks would probably 

be slightly-broader at the base and that the true area would be slightly 

greater than the values determined. 
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CHAPTER IV 

ERROR ANALYSIS AND CONCLUSION 

Error Analysis 

The trapezoidal rule was used to determine the areas under the peaks. 

X, + X, + X, + . . . +1x 
2 N-l 

3 
At (A.1 1 

The data points were so close together that any difference between this and 

Simpson's rule would be so small that it could safely be neglected. Also, 

the endpoints were either very small or zero, so that an excellent approxima- 

tion can be obtained by simply summing the values of the data points. The true 

areas would be obtained by multiplication by the proper proportionality 

constant. 20 

Area = prop. const. * + X2 + X3 + . . . X 
N-l (A.2) 

The results of any particular run are usually normalized; that is, the 

percentage composition is calculated by measuring the area of each peak and 

dividing the individual areas by the total area, e.g., 
21 

% B = Area of B . 100 
Total Area 

(A.31 

The normalized calculations for all four runs are given in Table 2. The 

agreement of the percentage ratio of each peak among runs is relatively good, 
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even for the deconvolved results. 

Areas of compounds are not directly proportional to the percentage compo- 

sition, i.e., different compounds have different detector responses; therefore, 

it is necessary to determine correction factors. Once determined, these cor- 

rection factors can be used to calculate the percentage composition. 22 

In an attempt to determine some idea of the inherent errors in the taking 

of gas chromatographic data, ratios were taken of the peaks in Run 1 and com- 

pared to the same ratios in,Run 2 to see if there were significant differences. 

Only Runs 1 and 2 were compared because the peaks were well separated here. 

Although most compared quite well, one difference of 5 percent was observed. 

This means that it is difficult to get a very exact error analysis. 

Other methods of determining the amounts of material present from over- 

lapped peaks are triangulation, peak height measurement, and the dropping of 

a perpendicular at the lowest point of the valley between two peaks. 23 

Obviously, none of these methods could apply to the first two peaks of Run 5 

as the peaks are almost completely merged. This leaves deconvolution as the 

only method available for treating problems of this type. In Run 4 the first 

two peaks are merged to such an extent that none of the above methods are 

recommended.24 The perpendicular drop method will be investigated to get 

some idea of the error involved. From Table 2 the ratio of Peaks 1 and 2 in 

Run 4 results in a value of 2.47. Deconvolution gives a value of 1.57. The 

ratio of the same peaks in Run 1 where the peaks are well separated is 1.64. 

The ratio of the deconvolved peaks differs from the ratio of the same peaks 

in Run 1 by 4 percent. The ratio from the perpendicular drop method differs 

from the ratio in Run 1 by 51 percent. This is much larger than one would 

expect from experimental error. In such cases one would prefer the 
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TABLE 2 

AREAS UNDER THE PEAKS 
(Normalized) 

Percentage Composition 

Sample Mixture 
Run 1 Run 2 Run 4 Run 5 Run 4 Run 5 

After Decon. Before Decon. 

is Compound A 13.010 12.768 13.372 13.418 9.814 
I33.840 

Compound B 21.371 21.428 20.960 20.827 24.219 

Compound C 33.856 33.470 33.082 33.115 32.125 31.950 

Compound D 14.223 14.656 14.714 14.531 15.380 15.346 

Compound E 17.541 17.678 17.871 18.108 18.462 18.865 



deconvolved value if it were available. 

Discussion of Results and Conclusion - 

One of the goals of this project was to develop methods for obtaining 

a good deconvolution with a minimum of time and effort. This was achieved 

in large measure by developing computer programs to handle all aspects of 

the problem and using INPUT statements to most conveniently vary the impor- 

tant parameters. 

Striving for generality was another goal. Working in the timesharing 

mode and using FORTRAN exclusively will not be the methods everyone will use. 

However, the programs will not be too difficult to adapt to the minicomputer 

or other data handling machine the researcher may have. The methods used 

here wi 11 not have general applicability. They would be most appropriately 

applied to data where the deconvolved result would consist of a number of 

quite d istinct "peaks." However, in cases where the machine function is known 

exactly , the concept of function continuation could probably be applied in 

some sort of "iterative" process that converges to the correct result. Perhaps 

the sidelobes could be identified to give a starting point. 

The concept of function continuation in the frequency domain provides 

a twofold advantage. Not only does it serve to improve the deconvolution 

considerably, but, by examining the truncated artificial function, a basis for 

determining how close one is to the attainable limit in a straightforward 

deconvolution is obtained. 

More work needs to be done in making good artificial functions as evidenced 

by the crude matchup of coefficients. That the peak shapes are not gaussian 

is obvious when the artificial function is overlaid over the deconvolved result. 
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One needs to find some distributions that can be expressed algebraically 

that closely resemble the peak shape. Alternatively, the shape of the decon- 

volved peaks may be changed slightly by changing the shape of the machine 

function. 

The shape of the machine function used in this investigation was obtained 

by taking the top of a given peak as the origin, compressing the t-axis behind 

this origin and expanding the t-axis in front of it. The amount of compression 

and expansion was varied by inputting a value for the variable "c" in the 

computer program. This was expressed in the program as (x+c*x), which is 

algebraically the same as (c+l)x; ctl is the linear factor of expansion 

and compression. It took the value 1.4 for the deconvolution of Run 4 and 

1.36 for Run 5. It is easy to see how this might be generalized to give the 

t-axis any variable amount of expansion and compression, and hence give the 

machine function and shape desired, by using a general polynomial in place 

of this linear factor. 

a+bx+cx2+dx3t . . . 

The constants a, b, c, etc. are varied to give the results desired. A 

different polynomial may be used for expansion from the one used for compres- 

sion. Note that the expression above is a special case of this general 

polynomial with b=c+l and a=c=d= . . . = 0. 

Some of the programs are inefficient as far as computer time is concerned. 

No attempt has been made to make them more efficient nor to write them in 

more polished form. In particular, if it was all to be done over, the pro- 

gram for the machine function would be rewritten using a guassian rather than 

an isolated peak as a beginning function; thus eliminating the need for 

interpolating between the points. 

48 



APPENDIX A 

DATA WINDOWS 

Data windows will be discussed only qualitatively here. 'For a more 

rigorous mathematical discussion, one is referred to the references. 11,17,25 

The frequency and time transf0rm.s are very similar in form,.differing 

only by sign on the exponential term. The results obtained are nearly always 

of the same form regardless of in which domain we begin initially. 
26 

Thus, 

a data window will have essentially the same effect regardless of the domain 

in which it is applied. It is better interpreted when applied in the time 

domain so attention will initially be restricted to this. 

A knowledge of Fourier transforms shows that the sharper points of a 

function require high frequencies to represent it, an abrupt discontinuity 

taking frequencies ranging to infinity. The Fourier series is periodic so 

that if the function and its slope are not the same at its endpoints there 

will be an abrupt discontinuity and the frequencies will range to the highest 

ones present as the repeating series tried to join itself over the endpoint 

values. These frequencies usually group around the major frequency components 

making up the function and is referred to as "leakage" in the literature. 
27 

(See Figure 18.) 

To more faithfully represent the frequency spectrum over the real, infinite 

time domain would require a data window over a longer interval of time; the 

wider the data window, the better the results. However, this is not often- 
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A 
(a) Function and its slope not the same at the endpoints. Note the additional 

frequencies introduced. 

J- 
(b) Function and its slope the same at the endpoints. Transform is two 

symmetrical spikes. 
Fig. 18. Cosine function and associated transform with data taken over two 

different intervals to illustrate leakage. 



possible to realize in practice. Also if, by chance, the function and its 

first derivative happened to be the same at both endpoints, these additional 

frequency components would not be introduced. This happy situation seldom 

occurs naturally, however. One may, in a sense, bring this about, however, 

by extending the function at its endpoints in some smooth curve such that the 

function and its first derivatives are smooth and continuous across this 

region. Another way of reducing these additional frequency components is 

by using a "data window." 

Actually, the operation of taking data over a finite range is referred to 

as applying a "rectangular" data window as it can be viewed as the multiplica- 

tion of a rectangular function of unit height times the actual time function 

over the real, infinite time domain. 

Data windows are functions that decrease to zero outside the range over 

which data is taken and are multiplied by the real, infinite time function. 

They all usually have a value of unit in the center and fall off in a regular 

manner to small values or zero at the endpoints. In all cases their purpose 

is to make the function and its first derivatives smooth and continuous at 

the endpoints. 

Note that the frequency spectrum introduced by a sharp discontinuity 

usually expresses itself in the form of "sidelobes" on both sides of the 

function. (See Figure 19.) 

Fortunately, the data in this research is not beset with the problem 

of abrupt discontinuities. The data and its slope go smoothly to zero at 

both ends of the data. 

In the frequency domain, however, the researcher is confronted with 

this abrupt behavior as the frequency spectrum is cut off at some point. 
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.-al- 
(a) Rectangle function, II(x). 

(b) Transform of rectangle function, 
sine x. Note the sidelobes. 

Fig. 19. Rectangle function and its transform, 
sine x. 

52 



I - 

As might be expected, sidelobes are obtained with the transformation to the 

time domain. A data window has the effect of bringing the frequency function 

and its slope relatively smoothly to zero or small values, and, hence, to reduce 

the sidelobes. As the data window tends to narrow the function somewhat, the 

effect in the transform domain is to broaden the peaks slightly. This broad- 

ening, which varies with the type of data window used, is one of the worst dis- 

advantages of these windows. Also the shape of the peaks may be distorted 

slightly. 

The above statements, apparent for a single distribution, may not be so 

obvious when the data consist of a number of peaks at differing locations. 

But if one considers that the transform of a sum is the same as the sum of the 

transforms (addition theorem) and that a shift in location means only multi- 

plication of the transform by a "phase factor" of unit amplitude, then it is 

easier to see how all the peaks will be affected in the same manner. 
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APPENDIX B 

THE DISCRETE FOURIER TRANSFORM 

The complex Fourier series representation of a function defined over the 

interval (0,2p) is given by: 

f(t) = y Cn exp(nint/p) 
n = -00 

(2.1) 

where the complex coefficients, Cn, are given by: 

f(t) exp(-niWp)dt (2.2) 

If only discrete data points are given the above integral can be 

numerically approximated by a summation. Suppose there are N equally spaced 

data points, Xk: 

t = kAt NAt = 2p At = dt 

)i Xk exp 

cn = ; N$ Xk exp(-niZrk/N) 
k=O 

(B.1) 

If the data are band-limited, that is, the frequency spectrum does not 

extend past a certain point, and if the sample point interval is smaller than 

a half-wavelength of the highest frequency present, then no information will 

be lost in taking the summation rather than the continuous integral in 

54 



determining the coefficients.28 If the above is true, then more than N 

terms need not be included in order to completely restore the original 

function f(t). 

!!. -1 
2 

f(t) = c Cn exp(niWp) 

n N =-- 
2 

03.2) 

If discrete points are desired rather than a continuous function, this 

may be written as: 

N 
2 

-1 

x =_ T 
k L 

n N = _-- 
2 

ev 

C n exp(niZnk/N) (B.3) 

By considering the periodicity of the exponent and by noting that the deri- 

vation of Cn from -N/2 to -1 is the same as from N/2 to N-l, it is apparent 

that this expression may be written: 

Xk = exp(ni2nk/N) (B.4) 

The expression in this form is called the "inverse discrete Fourier transform" 

and its companion: 

cn= 1 
N :"b 'k 

exp(-ni2rk/N) 
= 

(B-5) 
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the "discrete Fourier transform." 

The equations expressed in this symmetric form make it possible to write 

only one computer program to handle both computations. One has only to change 

the sign of the exponent and to consider the factor l/N when doing the inverse 

transform. 

The fast Fourier transform, usually written FFT, is only a computational 

algorithm to shorten the length of time over conventional methods in comput- 

ing the discrete Fourier transform. 27,29,30 
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APPENDIX C 

COMPUTER PROGRAMS WRITTEN TO PERFORM 
FFT DECONVOLUTION 

Due to the enormous volume of calculation involved, computer programs 

were written to handle almost all aspects of the program. 

The computer used was the Xerox Sigma 9 which operates under Control 

Program V (CPV version EOO). Most computing was done on the cathode-ray 

terminals (time-sharing mode). The Tektronix 4010-l graphics terminal and 
a 

a Calcomp 565 drum plotter were used to plot all graphs. All programs 

were written in FORTRAN IV with the exception of two Xerox extended FORTRAN 

options, the INPUT and OUTPUT statements. They serve as free form read and 

write, respectively. 

No subroutines were used with these programs. In the time-sharing mode 

it was more convenient to use the SET statements of the terminal executive 

language, especially in the earlier stages of the research when it was 

necessary to examine the output of each program. It should not be difficult 

for the programmer to adapt the programs to any system, however, with slight 

modifications. 

FFT deconvolution was implemented with these programs as follows: 

First, a machine function was generated using either MACHFUN or TESTFUN. 

Program TESTFUN generated data points from a gaussian distribution. The 

height and width of the gaussian were varied by inputting two variables via 

the INPUT statement. MACHFUN first read in data points from the 5th peak in 

Run 1. Then by interpolating between the points the narrowness was varied in 

aTommy Dearmond, personal correspondence. 
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a continuous manner. The skewness was varied with one parameter by compres- 

sing the function behind the peak and expanding the function in front of it. 

The third parameter enabled the function to be shifted along the t-axis. This 

has the effect of shifting the deconvolved output. This was necessary in order 

that the program that builds the artificial function would not have "split" 

peaks to contend with. 

Next, a forward transform was taken of the machine function using program 

FFPEAK3' to get its coefficients. Also, the forward transform was taken of the 

data using FFPEAK. 

These coefficients were read in program FGH and the coefficients of the 

data were divided, one by one, by the coefficients of the machine function. 

When applying a data window, this division is multiplied by a factor which 

depends on the data window applied. See program FGHAM to see how a Hamming 

window was applied to Run 5. 

The coefficients obtained by division are read into FFPEAK and an inverse 

transform is taken. The user is allowed to select the number of coefficients 

wanted to go into the transform via an INPUT statement. The user can thus 

cut off the frequency spectrum at any point and note which gives the best 

deconvolution. 

The real part of these numbers is read by program CALCOM and plotted. 

(If the imaginary part of these numbers is very large, one should suspect 

an error.) This is usually plotted along with the original data, and usually 

the hybrid function and artificial function, in order to better compare them. 

Program SUB is used to construct the hybrid function. Coefficients from 

the artificial function are substituted in beginning at any desired point. 

To use this program, input the number of coefficients of the original function 
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that is wanted and the rest will be substituted from the artificial function. 

An inverse transform of this is taken using FFPEAK. The result is usually 

plotted along with the straightforward deconvolution in order to better 

compare them. 

ARTFN is the program that builds the artificial function. It reads the 

deconvolved function and determines the location, height, and full width at 

half-maximum of each peak. An artificial function is then constructed with 

gaussian distributions having these parameters. This function may be plotted 

directly using CALCOM. The forward transform is then taken using FFPEAK 

to get the coefficients. 

In coneluding, there is one point that needs clarifying. In some of the 

programs one, loosely, is asked to input the number of coefficients of that 

number of terms of the lowest frequencies. With the exception of the first 

coefficient, there are two coefficients that correspond to each wavelength. 
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NAUE - TEsfFUN 

C 
C THIS PqY3?AH GENERATES DATA POINTS CF A t7AUSSIA.N 
t DISTRXBJrIYN. THERE ARE TUO INPUTSI THE ~1~751 
C OETERMI~~O WE HEIGHT OF THE PEAK Ah0 THF SECOND 
C DETERNIYEO THE WIDTH* 
c 

DI~EIISIW Yt256) 
INPdT SIT 
DO 1 I-l,256 
y~I~-9~3ExP~~fI~j29.~ri2*T~ 

1 CBN~IYJE 
hRITEl3#2)Y 

2 FOR~~T~¶OF~~O~ 
STOP 
END 
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Pi*?& - ~4C4CdY 

E 01~13 4YY INITIAL SET OF OATA POlwlS OF A PROSPECTIVE 
c n*cnxc~ rJWTIO’4, THIS PROGRAB. BY LJSINR THREE INPUT 
C PAHAMCTE?S, GIVE9 THE FLikCTIdN 4 CERTAIN AMOUNT OF 
c SKEmhE99, -ud*RhS fir) tlR0A~Eb.S THE FUNClInk, A*0 SHIFTS 
C THF FU’ICTI~N~LATER~~,LY, IN THAT OPDER. 
C 

DIMEqSIy- RUYIN(~OZI)~HF~~S~~~RUI~O~~, 
OAT4 ‘tF/O/ 
REA>f 3Sri ,RU’JIN 

1 FORY4T(loF5mO) 
IkPJT C,SC,IBECiIN 

E EOLLgJING 9IT dF tgCE CCWRESSES TME X-AXIS BEHINO 
C THE PEA<. POlNt 433 IS AT THE TOP OF THE PEAK. - 

GO 2 l-1*1024-*33 
RU(I~~~~I-RUNINII*~~~I 
x-1 
K-IYTI X-CsXl 
R~~I~II~~~~)-IX-C+X-K)O~PU~K+~~~) 

I=RU1<+~33))+RU(K+*33) 
2 CU*rTIhcJE 

cc THIS BIT ~JF CODE EXPANDS THE X-AYIS Ih FQbrYT BF THE PEA&, 
C 

DO 3 1=432~1,-1 
X-433-I 
K-C33=IYTtX+C+X) 
IF~~,~T,¶~RUNIN~I~-~JQ~ TO 3 
RUYIYIII-PUNIN~K~-~~X+C~X~~I~T~X~C~X~I~ 

I(RUYIN(~I-RIJNIN(K-~)I 
3 CONTIVJE 

C 

E 
ThE FOLLY~INQ 611 OF CODE NbRROuii IhD SHIFTS THE FUNCTION. 
IT CAti 5bThTN DATA POINTS FOR ANY INCREMFhT BY INTEWOLATING 

C BETUEEV T4E POINTS. 
C 

L;U 3 I.l,INT(iO24/SL) 
RI.1 
K-RI+SC 

5 HF~I+I~CGTN~~RUYIN~Y~~~RI~SC~~~~~RUN~~(K+~~~RU~IN(K~~ 
~RITEi36a&bfdF 

4 FORV~TIIOFSOO) 
STOP 
END 
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C THIS Pl533AM CCIHPUTEB THE FORRARD OR IhVFRSE FOURIER 
C TRANSF~RH FM? ANY SET CF OISCRElL: DATA POINTS UicICH IS AN 
E :k;E;RAL BSuFR OF Two* INPUT -1. FOR A FnAWARD TQANSFSRR 

Fd9 AN INVERSE TRANSFCRM. IF -1. IS INPUTTED THE 
C PRotR;I lrric READ INLY REAL DATA POIhTS nF A BET OF ANY 
C LEkGTH. IF 1, IS INPUTTED THE PROGRAb WILL READ ONLY 
C PRaPERLY FSR*ATTED COMPLEX NUMBERS. QIv,rc ANY ARBITRARY 
C SET IYF DATA. BE SURE TO ~IHENSICIH THE PPePER ARRAYS 
C Tb THE SMALLFST POYE R OF TM0 THAT *ILL CIW~AIN THE DATA. 
C THE REST OF THE VALUES IH THE ARRAY WILL BE SET TO ZERO 
C TO QIVE AY OVERALL DATA FIELD OF LERcTH AN INTEORAL POWER 
c OF TuCI. SET NSTAGE To THIS II*TEGPAL POMER BF 1~0, 
c ALSO, F5Q THr I’JvEQSE TRf.NSFClRM YOU beILL hEED 10 I’JPUT 
C THE NU’lBE3 OF COEFFICIENTS YOU UISR; TRE REST MILL BE SET 
C TO ZERO. 

E NOTE: ALl+sUsR THE PRtSENT ARRAVL ARE DIMENSIONED TO HOLD 
C 1024 DATA mBTkt9, THE PRCQRAR I9 SET TO aEAD ONLY 256, 
C 
c 
C THIS FIR9T 817 OF CODE IS TO FILL THE Af?RAvS* 
C 

R,EAi=B 3ATA(lO24)rCBEF12,1024J 
REAL*8 fLTN,PHI2h,SIGN,fLIN2J,TEflP 
DOtidLE COMPLEX WoX(2rl024) 
DATA Z’ATA/Q/ 
INTE3ES R 
NETASE'IO 
SIGN=-1 * 
N-2rrYSTA6E 

77 FdR?ATllOFS.O) 
66 DO 22 I-1.N 

22 X(~~II.DC~PLX~DATA~I)~C.I 
GO 13 55 

33 INPJT ‘i 
REA3(i3s9’abCBEF 

99 F~R~AT132~.1~,2X,Dtl.15) 
DO 9 I-M+lrN+l-Ii 
CdEFtlrI)-01 

9 CaEFt2,Ibr0, 
00 44 I-1rN 

44 X(~~II=~C-PLX(COEF~I,I~~CBEF~~,III 
55 CONTINJE 

C 
C ACTUAL ZAL~UIATICIN STARTS HERE* 
C 

N2’Y/2 
FLTY--d 
PHI2~=6~213lB5307179~~6/fLTN 
I?0 3 J*18MTAGE 
N2JmV/(Z*+J, 
NR-Y2J 
NI*(2++J)/2 
08 2 I=l,r41 
Th?.l.f 1-4 ,*yp, 
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FLIVEJ-IN2J 
TEMP~F,Ir2J~PHIZN~SIQN 
Y-DC~PLX~DCOS(TEHP~~DSIN~TE~P~~ 
08 2 Q-l.rR 
ISUg=Q+INIJ 
ISUBl.?*INZJ+2 
ISJB2=13URl+N2J 
ISU33.ISUB+N2 
X~~~I~J~I~X(~~ISUB~~+~~X~~~ISUB~I 
X12rI3J33l-X~~rISUBl)-U~X~l~I6UB2~ 

2 CONTIYJE 
DC! 3 Ftr1.N 

3 Xllr3)r*1P,R) 
IF~SIGY.GT~O.)GO TO 6 
Dd 4 9-1rN 

4 XI~~S)*X~~JR)/FLTN 
5 YR~TE~l2~86)~x~2,J),J=l~h) 
08 FOR~A11321~15r2X,D2~~1~~ 

STOP 
END 
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C 
C THIS PR¶33An DIVIDES 7HE CdEFFICIENTS OF THE- TRAwSFOR~ 
C Of THE JIVEY OATA PfYIhTS BY THE t%ffICIFkT8 OF THE 
C MKHIHE FJYCTION TERH BY TkPH TO GIVE THE COEFfICIEhTS 
C OF THE aE:5Wt,LvED FUhCTInh, 
C 
C 

DOUBLE CO’lpLEX F~102~1,Gf10241,Hi¶024l 
REAI(Brl IR 

1 f~R~41~~2~*~5*2n#021~15~ 
AEA3~3r3)l-f 

9 f~S~41021.15r2x,021.15~ 
4 bt3 5 r-1.102, 
5 F(I).dtIt/QtI) 

*RIrtll0*6lF 
6 F~W~ATI~Zl.iS,2X,D21,15J 

STOP 
EN0 
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IGAHE - C4L:O* 

C 
C THIS I9 T4E PROGRAM THAT INITIATKS THE PLQTTI~O AOUTINES~ 
C IT WILL QcrD AS MANY AS FOUR DIFFERENT DATA FILE8 AND 
c PLOT THEI 4LL ON ONE GRAPH* THERS ARE THREE IN?UfBr FOR 
c THE FZQET, INPUT EITHER 4 921 OR 4 ‘O’r A ‘2’ IF YOU 

YAhT TdE SJTPUT ON THE TEKTRONIX OCREEN OR ‘01 If YOU KANT 
E CUTPUT JY THE C4LCOHP PLOTTER* TYE SECO~O IhPUt IS 4 SCALINQ 
c FACTOR. T+ PROQRAH IS OESIONED 10 GaHw ALL NUMERICAL 
C VALUES Iv INCHEEI ALL NUMERICAL YILUES TIMES THE SCALINO 
C CACTOR rl:U GIVE AS THE OUTPUT THIS ~RIYDLICT IN INCHES. THE 
C ‘THIRD IYPJT 18 THE AMOUNT IN DATI.POINT UNITS THAT SOHE Of 
c THE OR4Cw9 4eE EHIfTEo. THIS IS NECESSARV DECAU~E 4 SWIFT 
C IN THE Il4C*INE FUNCTION CAUSES 4 6HIFT IN THE CJUTPUT~ THIS 
C WET BE 4I)JUSTED IN ORDER TO COHWARE IT uITH THE ORIOINAL 
c 04th~ 
C 

66 
77 
11 

100 

a 

C 

DIMEYSI9N X~lo24~~Y~loPllrYYfbO24~,Zi~026~ 
REAL*9 EOVERV 
cOnq¶ti /MDEL/ ITEU 
INPUT ITEK,fCTR 
CALi FACTOR~FCTR~ 
EOvESv-0. 
RL43(15.55ly 
FBR’l4~132~.15) 
RE*Dl17,1~1lZ 
FOR~Af1321.15) 
RE4>1¶6*66rEND’77)Yy 
FCRtlAT( 1oF5*0) 
DO 11 I-97101024 
YY(I)r3* 
INPJT r( 
00 a 1mt.ro24 
X(I)=ESVERV+.5 
YY~I)-~*ll~+*00~+5* 
Y~I~-YlI)~.026+1~ 
~111-~f1~4*026+2.5 
IF~YY~I~~RT~lO*~YY~~~-9~ 
If(YY~I~rLT.O~~YY~Il-*OOl 
IF~YII).GT.~~.)Y(I)-~~. 
IF~IlI~*LT~O~~YlI~-0001 
EOvERV=I/60* 
CONTIYJP 
CALL l L~TB~lrlrl~ 
CALL 4~IBf~5rO~rlHT~lr26.~O*~b~~0.,l.,4~F4~l~ 

C C4Li ~U~61.5,0.,1HG,1,¶0.~~0.~1.,0.~1.,4~F4.1~ 
CALL ~LETlX(llry1H),31 
DO 81 <-2.102,-H 

88 CALL .L~T(X(Y~,YIK+H-II~~) 
08 22 <-lb259Ma1024 

22 CALL ~L0f~X(K)rY~K+~-l024~~2~ 
CALL •i9TIX~~~~21l)r~l 
DO 99 <-2,1024-H 

99 CALL PL~T~X(K~,Z~K+H-~I~~) 
Ofl 35 <-1026~nr1024 

99 CALL ~LdTIXlK~,Z~K+M-lO24l~2l 
CALL PiOT~Xfl)rYrtlbrO~ 
00 44 <=2,$024 

*I CALL ~L¶TIXIK)~YYIY~,~I 
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CALL i~YEfX~Y,lO24~1,4. .2rOl 
CALL ~IWfX~yyrlO24rlr4r l 2rOl 
CALL STBPPLOT 
STOP 
END 
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NAHE = APTCY 

C 
C THIS P95094~ 8C4~0 THE 04TA POINTS If THE DECONVOLVEO 
C FUNCTIdY 4YO OEtERHINES THE PEAK HEXCHTS, LOCATIO’l(s AN0 
C THE FULL ~XDTW AT HALF HAxIMUH Of EACH* AN 4RTIfICIAL 
C FUNCTIOY I3 THEN BUILT FRCIH GAUSSIAN OISTRIBuTION6 WITH 
C THE ii’(p i-JHRER OF PEAKS8 AND YITH HEIOHTSr YIDTMSr AN0 
C LOCATI5YS 4s DETERMINED ABOVE* 
C THE PEA< LOCATIONS ANO UIOTHE ARE OUTPUTTED IHHEDI4TELy 
C TO CHEtK FOR GROSS ERRORS. 
C 

DIflEYSIdN PEAK~NI~O~~~,HT~~~~LOC~~,~LR~S~ 
DIrqEYSIIN LLl5)rWFl5)rWYlS~ 
REA~~S~~~IPEAKFN 

4 FOR~ATl321*lS, 

E THE FeLLedIN~ BIT 0~ CODE DETERHZNES THE PEAK WEIGHT, 
c LOCATI¶Y, &ND FUHH. 
C 

U-0 
L-0 
ISJ-0 
00 1 1-1~1024 

l LdCfLl-IJRo TO 2 
~‘,‘;;‘;EQel,QO Te 2 

2 

1 

: 

7 
C 

CONTIYJE 
00 7 1-1,s 
N-LBClIl-LRlI, 
00 8 J-l.0 
IflPE4<FUlJ+N~3~.QT.WTo/E.)LLlX~-LR~Il+4~J; 

1WF~Il..693l5/llLRlIl~LLlI~)/2~~~42~GO TO 9 
CCIYTIYJE 
WU~I)-LR(I)+LL~I) 
BUT?JT r*iI, 
OuTPJT LOCI I) 
COYTIYJE 

C THE F5-L 3dINl3 BIT OF CODE BUILOS THE ARTTFXCIAL FUNCTION 
C FRetl GAJ9ST4N6 
C 

08 6 J-lr1024 
6 PE4~FYlJ~-HT~~l*EXPl~~J-LOCllll~~2~Ufl~,~ 

I~HTl2lrEXPl~lJ~LO~l2l~~~2~~Ff2l~ 

r+HTlSr~EX~l~~J~L0ClS)),r2+wFlr)) 
YRITE~~J~S,PEAK~N 

5 ~~~~4T”OFS,@, 

END 
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C 
C THIS P3337~M SUBSTITUTES CBEFFICIE~TS BF THE AQTIFICIAL 
C FUNCTION INTO THE TRANusFORM OF WE DECONVOLVED FUNCTION. 
C INPUT 14~ W*BEA OF COEFFICIENTS OF THE ORIGINAL 
C FUNCTI3Y TJAT Yeu WANT AND THE RCST HILL BE AUTO~IATICALLY 
C SU8STITJTE3 FROM THE ARTIFICIAL FUNCTION. 
C 

cOu3;E :OMPLEX WOJTll024~r~~~JT~lo241 
READ(l,ll~HOUt 

11 FOQ~AT~~21~15r2~~D21~15~ 
REA3~2r22)HHOUT 

22 FORHAT~O~~.~S,~XI~~~*~~, 
INPJT 4 
oa 33 I-n+lrlo2s-H 

33 H~UT~I~rW8UTlI) 
q RIlEf3J.44)HdUT 

44 F~R~Ar132~.1~~2X~U21.¶~~ 
STOP 
END 
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C 
C THIS PqgJqAa FIND8 THE AREAS UhDER THE PEAKS. THE ENDPtJINTS 
C IY.UST BE 3EfERHINED BY ILSPECTIme 
C 

DIMEYSISN A(S)rDECGN(5030) 
DATA A/3/ 
REA3l73.61DEC8N 

6 FbR~PT(lOFS*O) 
00 1 1-1#470 

1 A~lI-4~I1+DECONfIl 
DO 2 Im472r1120 

2 A(2I=A(L)+DECON(I) 
DO 3 I-192112861 

3 A13J-A~3)+DECONlI~ 
00 4 Im2Ylbr3770 

4 A~4l=A(ul+OECON(I~ 
Dd 5 I-IORB, 4960 

5 Al5)=Al5)+OECbN(I~ 
DO 7 J=lrS 

7 MRITE~~I~R~JIA(J) 
8 FORflAr1' 'r'AREAi~'rIl,')~'rF8.Ol 

OUTPUT tTHESE RESULTS nLsT BE MULTIPLIED BY THE 
#PROPEP l Rf9PORTIONALITY CnhS~~hf ~11 GIVE CCQQECT AREAI 

STOP 
ENG 
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