455 research outputs found

    A multi-stage model for dielectric barrier discharge in atmospheric pressure air

    Get PDF
    In this paper, a multi-stage numerical methodology for the description of the Dielectric Barrier Discharge physics in air is discussed. The behavior of the heavy species is computed using drift-diffusion equations. Electrons are taken into account by solving a non-linear formulation of electrostatics. The physical effects of the steamer discharges are modelled by means of a simplified 0D approach. The model also includes a semi-implicit 0D model for the assessment of the elementary chemical processes occurring in air. The developed methodology is employed for the simulation of a volumetric Dielectric Barrier Discharge reactor. The obtained species number density and surface charge deposition rates and are shown and discussed

    Real Time Power Control in a High Voltage Power Supply for Dielectric Barrier Discharge Reactors: Implementation Strategy and Load Thermal Analysis

    Get PDF
    Atmospheric-pressure plasma treatments for industrial and biomedical applications are often performed using Dielectric Barrier Discharge reactors. Dedicated power supplies are needed to provide the high voltage frequency waveforms to operate these nonlinear and time-dependent loads. Moreover, there is a growing technical need for reliable and reproducible treatments, which require the discharge parameters to be actively controlled. In this work, we illustrate a low-cost power supply topology based on a push-pull converter. We perform experimental measurements on two different reactor topologies (surface and volumetric), showing that open loop operation of the power supply leads to a temperature and average power increase over time. The temperature increases by Delta T-vol similar to 120 degrees C and Delta T-sup similar to 70 degrees C, while the power increases by Delta P-vol similar to 78% and Delta P-sup similar to 60% for the volumetric (40 s) and superficial reactors (120 s), respectively. We discuss how these changes are often unwanted in practical applications. A simplified circuital model of the power supply-reactor system is used to infer the physical relation between the observed reactor thermal behavior and its electrical characteristics. We then show a control strategy for the power supply voltage to ensure constant average power operation of the device based on real-time power measurements on the high voltage side of the power supply and an empirical expression relating the delivered power to the power supply output voltage. These are performed with an Arduino Due microcontroller unit, also used to control the power supply. In a controlled operation the measured power stays within 5% of the reference value for both configurations, reducing the temperature increments to Delta T-vol similar to 80 degrees C and Delta T-sup similar to 44 degrees C, respectively. The obtained results show that the proposed novel control strategy is capable of following the transient temperature behavior, achieving a constant average power operation and subsequently limiting the reactor thermal stress

    FLARE: A Framework for the Finite Element Simulation of Electromagnetic Interference on Buried Metallic Pipelines

    Get PDF
    The functionality of buried metallic pipelines can be compromised by the electrical lines that share the same right-of-way. Given the considerable size of shared corridors, computer simulation is an important tool for performing risk assessment and mitigation design. In this work, we introduce an open-source computational framework for the analysis of electromagnetic interference on large earth-return structures. The developed framework is based on FLARE-an efficient finite element solver developed by the authors in MATLAB((R)). FLARE includes solvers for problems involving static electric and magnetic fields, and DC and time-harmonic AC currents. Quasi-magnetostatic transient problems can be studied through time-marching or-for linear problems-with an efficient inverse-Laplace approach. In this work, we succinctly describe the optimization of time-critical operations in FLARE, as well as the implementation of a transient solver with automatic time-stepping. We validate the numerical results obtained with FLARE via a comparison with the commercial software COMSOL Multiphysics((R)). We then use the validated time-marching analysis results to test the accuracy and efficiency of three numerical inverse-Laplace algorithms. The test problem considered is the assessment of the inductive coupling between a 500 kV transmission line and a metallic pipeline buried in the soil

    Assessment of AC Corrosion Probability in Buried Pipelines with a FEM-Assisted Stochastic Approach

    Get PDF
    In this paper, a stochastic approach is combined with field theory and circuit methods to study how the geometrical and electrical properties of holidays (defects or pores in the insulating coating) in a metallic pipeline influence the probability of exceeding the current density limit for corrosion. Three-dimensional FEM simulations are conducted to assess the influence of the shape and electrical resistivity of the pore on the computed spread resistance value. The obtained results are then used to evaluate the probability of exceeding a given current density value for different sizes of pore and soil resistivities. Finally, a case of 50 Hz interference along a pipeline-transmission line routing is examined. The probabilistic approach presented in this paper allows the pipeline sections more subjected to the induced AC corrosion risk to be identified to be used as an auxiliary tool for adopting preventive protection countermeasures. Lastly, unlike most papers devoted to assessing electromagnetic interference on pipelines, the present work uses a probabilistic rather than a deterministic approach, representing its main novelty aspect

    A novel two-stage kinetic model for surface DBD simulations in air

    Get PDF
    In this work, a novel 0D model for the evaluation of O-3 and NO2 produced by a surface dielectric barrier discharge (SDBD) in a closed environment is presented. The model is composed by two coupled sub-models, a discharge sub-model and an afterglow one. The first one, simulating the discharge regime and consequently including electron impact reactions, aims to calculate the production rates of a set of key species (atomic oxygen, excited states of molecular oxygen and molecular nitrogen). These latter are the input of the afterglow sub-model, that simulates the afterglow regime. We introduce a methodology to relate the production rates of the above mentioned species to the input power of the SDBD reactor. The simulation results are validated by a comparison with experimental data from absorption spectroscopy. The experimental measurements are carried out as follows. First, the discharge is turned on until the NO2 number density reaches steady state. Then, the discharge is turned off for several minutes. Finally, the discharge is turned on again to observe the effects of the NO2 concentration on ozone dynamics. The entire process is done without opening the box. The system operating in all the above-listed conditions is simulated for three different levels of input power

    Differential Epigenetic Changes in the Dorsal Hippocampus of Male and Female SAMP8 Mice: A Preliminary Study

    Get PDF
    Alzheimer’s disease (AD) is the most common age-related neurodegenerative disease characterized by memory loss and cognitive impairment. The causes of the disease are not well understood, as it involves a complex interaction between genetic, environmental, and epigenetic factors. SAMP8 mice have been proposed as a model for studying late-onset AD, since they show age-related learning and memory deficits as well as several features of AD pathogenesis. Epigenetic changes have been described in SAMP8 mice, although sex differences have never been evaluated. Here we used western blot and qPCR analyses to investigate whether epigenetic markers are differentially altered in the dorsal hippocampus, a region important for the regulation of learning and memory, of 9-month-old male and female SAMP8 mice. We found that H3Ac was selectively reduced in male SAMP8 mice compared to male SAMR1 control mice, but not in female mice, whereas H3K27me3 was reduced overall in SAMP8 mice. Moreover, the levels of HDAC2 and JmjD3 were increased, whereas the levels of HDAC4 and Dnmt3a were reduced in SAMP8 mice compared to SAMR1. In addition, levels of HDAC1 were reduced, whereas Utx and Jmjd3 were selectively increased in females compared to males. Although our results are preliminary, they suggest that epigenetic mechanisms in the dorsal hippocampus are differentially regulated in male and female SAMP8 mice
    corecore