1,319 research outputs found

    Detection of specific bacteria in water: implications of survival strategy

    Get PDF
    It is widely recognised that conventional culture techniques may underestimate true viable bacterial numbers by several orders of magnitude. The basis of this discrepancy is that a culture in or on media of high nutrient concentration is highly selective (either through ”nutrient shock” or failure to provide vital co-factors) and decreases apparent diversity; thus it is unrepresentative of the natural community. In addition, the non-culturable but viable state (NCBV) is a strategy adopted by some bacteria as a response to environmental stress. The basis for the non-culturable state is that cells placed in conditions present in the environment cannot be recultured but can be shown to maintain their viability. Consequently, these cells would not be detected by standard water quality techniques that are based on culture. In the case of pathogens, it may explain outbreaks of disease in populations that have not come into contact with the pathogen. However, the NCBV state is difficult to attribute, due to the failure to distinguish between NCBV and non-viable cells. This article will describe experiences with the fish pathogen Aeromonas salmonicida subsp. salmonicida and the application of molecular techniques for its detection and physiological analysis

    Time-Delay Polaritonics

    Full text link
    Non-linearity and finite signal propagation speeds are omnipresent in nature, technologies, and real-world problems, where efficient ways of describing and predicting the effects of these elements are in high demand. Advances in engineering condensed matter systems, such as lattices of trapped condensates, have enabled studies on non-linear effects in many-body systems where exchange of particles between lattice nodes is effectively instantaneous. Here, we demonstrate a regime of macroscopic matter-wave systems, in which ballistically expanding condensates of microcavity exciton-polaritons act as picosecond, microscale non-linear oscillators subject to time-delayed interaction. The ease of optical control and readout of polariton condensates enables us to explore the phase space of two interacting condensates up to macroscopic distances highlighting its potential in extended configurations. We demonstrate deterministic tuning of the coupled-condensate system between fixed point and limit cycle regimes, which is fully reproduced by time-delayed coupled equations of motion similar to the Lang-Kobayashi equation

    Pt and PtRu catalyst bilayers increase efficiencies for ethanol oxidation in proton exchange membrane electrolysis and fuel cells

    Get PDF
    Polarization curves, product distributions, and reaction stoichiometries have been measured for the oxidation of ethanol at anodes consisting of Pt and PtRu bilayers and a homogeneous mixture of the two catalysts. These anode structures all show synergies between the two catalysts that can be attributed to the oxidation of acetaldehyde produced at the PtRu catalyst by the Pt catalyst. The use of a PtRu layer over a Pt layer produces the strongest effect, with higher currents than a Pt on PtRu bilayer, mixed layer, or either catalyst alone, except for Pt at high potentials. Reaction stoichiometries (average number of electrons transferred per ethanol molecule) were closer to the values for Pt alone for both of the bilayer configurations but much lower for PtRu and mixed anodes. Although Pt alone would provide the highest overall fuel cell efficiency at low power densities, the PtRu on Pt bilayer would provide higher power densities without a significant loss of efficiency. The origin of the synergy between the Pt and PtRu catalysts was elucidated by separation of the total current into the individual components for generation of carbon dioxide and the acetaldehyde and acetic acid byproducts

    Preparation, structural characterisation and antibacterial properties of Ga-doped sol-gel phosphate-based glass

    Get PDF
    A sol-gel preparation of Ga-doped phosphate-based glass with potential application in antimicrobial devices has been developed. Samples of composition (CaO)(0.30)(Na2O)(0.20-x) (Ga2O3) (x) (P2O5)(0.50) where x = 0 and 0.03 were prepared, and the structure and properties of the gallium-doped sample compared with those of the sample containing no gallium. Analysis of the P-31 MAS NMR data demonstrated that addition of gallium to the sol-gel reaction increases the connectivity of the phosphate network at the expense of hydroxyl groups. This premise is supported by the results of the elemental analysis, which showed that the gallium-free sample contains significantly more hydrogen and by FTIR spectroscopy, which revealed a higher concentration of -OH groups in that sample. Ga K-edge extended X-ray absorption fine structure and X-ray absorption near-edge structure data revealed that the gallium ions are coordinated by six oxygen atoms. In agreement with the X-ray absorption data, the high-energy XRD results also suggest that the Ga3+ ions are octahedrally coordinated with respect to oxygen. Antimicrobial studies demonstrated that the sample containing Ga3+ ions had significant activity against Staphylococcus aureus compared to the control

    External review of the storage plan for the Peterhead Carbon Capture and Storage Project

    Get PDF
    This document summarises the findings of an external independent review of the storage plan for the proposed Peterhead Carbon Capture and Storage project which aims to store up to 20 million tonnes (Mt) of CO2 within the framework of the European Directive on the geological storage of CO2. The Peterhead Carbon Capture and Storage Project proposes to capture carbon dioxide (CO2) from an existing gas-fired power-station at Peterhead and to store this in geological strata at a depth of around 2600 m beneath the outer Moray Firth. The plan is to store 10 - 15 Mt of CO2 over a ten to fifteen-year period commencing around 2020, but the site is being qualified for 20 Mt to allow for potential extension of the injection period. Storage will utilise the depleted Goldeneye gas condensate field with the Captain Sandstone reservoir as the primary storage container. The Storage Site covers some 70 km2, and comprises the Captain Sandstone and underlying strata of the Cromer Knoll Group, bounded by a polygon some 2 to 3 km outside of the original Goldeneye oil-water contact. The Storage Complex is larger, around 154 km2, bounded some 2 to 7 km outside of the original oil-water contact, and extending upwards to the top of the Dornoch Mudstone at a depth of more than 800 m. The top-seal of the primary container is a proven caprock for natural gas and is formed by the mudstones of the Upper Cromer Knoll Group, the overlying Rødby and Hidra formations and the Plenus Marl. A number of additional seals are present in the overburden within the Storage Complex, as are a number of potential secondary containers which could also serve as monitoring horizons. The geological interpretation of the storage site is based on the comprehensive datasets acquired during the discovery, appraisal and development of the Goldeneye field, and also data from other wells, fields and seismic surveys in the surrounding area. The static geological model of the storage site and adjacent aquifer has been stress tested for the key uncertainties, and it is considered to be robust. The storage capacity of the Goldeneye structure has been calculated using both static (volumetric) methods and dynamic flow modelling together with uncertainty analysis. Total estimated capacity of the structural closure is in the range 25 to 47 Mt and so robustly exceeds the proposed injected amount

    Span of control in supervision of rail track work

    Get PDF
    The supervision of engineering work on the railways has received relatively little examination despite being both safety-critical in its own right and having wider implications for the successful running of the railways. The present paper is concerned with understanding the factors that make different engineering works perceived as easier or harder to manage. We describe an approach building on notions of ‘span of control’, through which we developed the TOECAP inventory (Team, Organisation, Environment, Communication, Activity and Personal). This tool was validated through both interviews and questionnaires. As well as identifying the physical factors involved, the work also emphasised the importance of collaborative and attitudinal factors. We conclude by discussing limitations of the present work and future directions for development
    corecore