375 research outputs found

    Consent and Internet-Enabled Human Genomics

    Get PDF
    This month, PLoS Genetics is publishing an article from the company 23andMe reporting the first genome-wide association studies (GWAS) on multiple traits ascertained by self-reported information provided through the Internet from over 10,000 participants who pay the company for providing whole genome genotypes. The paper passed through scientific review by a panel of three experts relatively quickly and is sure to attract the attention of anyone with freckles, curly hair, or an aversion to asparagus. Novel associations are described for four intrinsically interesting traits (out of 22 considered), while known associations with hair and eye color are replicated in a dynamic data-gathering context. Additionally, intriguing observations on the interaction between genetic self-knowledge and self-report of phenotypes are described. The implications of the successful application of this Internet-enabled approach to GWAS research were considered to be more than sufficient to warrant publication in the journal

    Production of Diploid Male Gametes in Arabidopsis by Cold-Induced Destabilization of Postmeiotic Radial Microtubule Arrays

    Get PDF
    Whole-genome duplication through the formation of diploid gametes is a major route for polyploidization, speciation, and diversification in plants. The prevalence of polyploids in adverse climates led us to hypothesize that abiotic stress conditions can induce or stimulate diploid gamete production. In this study, we show that short periods of cold stress induce the production of diploid and polyploid pollen in Arabidopsis (Arabidopsis thaliana). Using a combination of cytological and genetic analyses, we demonstrate that cold stress alters the formation of radial microtubule arrays at telophase II and consequently leads to defects in postmeiotic cytokinesis and cell wall formation. As a result, cold-stressed male meiosis generates triads, dyads, and monads that contain binuclear and polynuclear microspores. Fusion of nuclei in binuclear and polynuclear microspores occurs spontaneously before pollen mitosis I and eventually leads to the formation of diploid and polyploid pollen grains. Using segregation analyses, we also found that the majority of cold-induced dyads and triads are genetically equivalent to a second division restitution and produce diploid gametes that are highly homozygous. In a broader perspective, these findings offer insights into the fundamental mechanisms that regulate male gametogenesis in plants and demonstrate that their sensitivity to environmental stress has evolutionary significance and agronomic relevance in terms of polyploidization

    Esperanto for histones : CENP-A, not CenH3, is the centromeric histone H3 variant

    Get PDF
    The first centromeric protein identified in any species was CENP-A, a divergent member of the histone H3 family that was recognised by autoantibodies from patients with scleroderma-spectrum disease. It has recently been suggested to rename this protein CenH3. Here, we argue that the original name should be maintained both because it is the basis of a long established nomenclature for centromere proteins and because it avoids confusion due to the presence of canonical histone H3 at centromeres

    Violent video games and morality: a meta-ethical approach

    Get PDF
    This paper considers what it is about violent video games that leads one reasonably minded person to declare "That is immoral" while another denies it. Three interpretations of video game content a re discussed: reductionist, narrow, and broad. It is argued that a broad interpretation is required for a moral objection to be justified. It is further argued that understanding the meaning of moral utterances – like "x is immoral" – is important to an understanding of why there is a lack of moral consensus when it comes to the content of violent video games. Constructive ecumenical expressivism is presented as a means of explaining what it is that we are doing when we make moral pronouncements and why, when it comes to video game content, differing moral attitudes abound. Constructive ecumenical expressivism is also presented as a means of illuminating what would be required for moral consensus to be achieved

    Genetic analysis of variation in human meiotic recombination

    Get PDF
    The number of recombination events per meiosis varies extensively among individuals. This recombination phenotype differs between female and male, and also among individuals of each gender. In this study, we used high-density SNP genotypes of over 2,300 individuals and their offspring in two datasets to characterize recombination landscape and to map the genetic variants that contribute to variation in recombination phenotypes. We found six genetic loci that are associated with recombination phenotypes. Two of these (RNF212 and an inversion on chromosome 17q21.31) were previously reported in the Icelandic population, and this is the first replication in any other population. Of the four newly identified loci (KIAA1462, PDZK1, UGCG, NUB1), results from expression studies provide support for their roles in meiosis. Each of the variants that we identified explains only a small fraction of the individual variation in recombination. Notably, we found different sequence variants associated with female and male recombination phenotypes, suggesting that they are regulated by different genes. Characterization of genetic variants that influence natural variation in meiotic recombination will lead to a better understanding of normal meiotic events as well as of non-disjunction, the primary cause of pregnancy loss. © 2009 Chowdhury et al

    Hierarchical Anatomical Brain Networks for MCI Prediction: Revisiting Volumetric Measures

    Get PDF
    Owning to its clinical accessibility, T1-weighted MRI (Magnetic Resonance Imaging) has been extensively studied in the past decades for prediction of Alzheimer's disease (AD) and mild cognitive impairment (MCI). The volumes of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) are the most commonly used measurements, resulting in many successful applications. It has been widely observed that disease-induced structural changes may not occur at isolated spots, but in several inter-related regions. Therefore, for better characterization of brain pathology, we propose in this paper a means to extract inter-regional correlation based features from local volumetric measurements. Specifically, our approach involves constructing an anatomical brain network for each subject, with each node representing a Region of Interest (ROI) and each edge representing Pearson correlation of tissue volumetric measurements between ROI pairs. As second order volumetric measurements, network features are more descriptive but also more sensitive to noise. To overcome this limitation, a hierarchy of ROIs is used to suppress noise at different scales. Pairwise interactions are considered not only for ROIs with the same scale in the same layer of the hierarchy, but also for ROIs across different scales in different layers. To address the high dimensionality problem resulting from the large number of network features, a supervised dimensionality reduction method is further employed to embed a selected subset of features into a low dimensional feature space, while at the same time preserving discriminative information. We demonstrate with experimental results the efficacy of this embedding strategy in comparison with some other commonly used approaches. In addition, although the proposed method can be easily generalized to incorporate other metrics of regional similarities, the benefits of using Pearson correlation in our application are reinforced by the experimental results. Without requiring new sources of information, our proposed approach improves the accuracy of MCI prediction from (of conventional volumetric features) to (of hierarchical network features), evaluated using data sets randomly drawn from the ADNI (Alzheimer's Disease Neuroimaging Initiative) dataset

    DNA Resection at Chromosome Breaks Promotes Genome Stability by Constraining Non-Allelic Homologous Recombination

    Get PDF
    DNA double-strand breaks impact genome stability by triggering many of the large-scale genome rearrangements associated with evolution and cancer. One of the first steps in repairing this damage is 5′→3′ resection beginning at the break site. Recently, tools have become available to study the consequences of not extensively resecting double-strand breaks. Here we examine the role of Sgs1- and Exo1-dependent resection on genome stability using a non-selective assay that we previously developed using diploid yeast. We find that Saccharomyces cerevisiae lacking Sgs1 and Exo1 retains a very efficient repair process that is highly mutagenic to genome structure. Specifically, 51% of cells lacking Sgs1 and Exo1 repair a double-strand break using repetitive sequences 12–48 kb distal from the initial break site, thereby generating a genome rearrangement. These Sgs1- and Exo1-independent rearrangements depend partially upon a Rad51-mediated homologous recombination pathway. Furthermore, without resection a robust cell cycle arrest is not activated, allowing a cell with a single double-strand break to divide before repair, potentially yielding multiple progeny each with a different rearrangement. This profusion of rearranged genomes suggests that cells tolerate any dangers associated with extensive resection to inhibit mutagenic pathways such as break-distal recombination. The activation of break-distal recipient repeats and amplification of broken chromosomes when resection is limited raise the possibility that genome regions that are difficult to resect may be hotspots for rearrangements. These results may also explain why mutations in resection machinery are associated with cancer
    corecore