173 research outputs found

    The MPIfR-MeerKAT Galactic Plane Survey II. The eccentric double neutron star system PSR J1208-5936 and a neutron star merger rate update

    Full text link
    The MMGPS-L is the most sensitive pulsar survey in the Southern Hemisphere. We present a follow-up study of one of these new discoveries, PSR J1208-5936, a 28.71-ms recycled pulsar in a double neutron star system with an orbital period of Pb=0.632 days and an eccentricity of e=0.348. Through timing of almost one year of observations, we detected the relativistic advance of periastron (0.918(1) deg/yr), resulting in a total system mass of Mt=2.586(5) Mo. We also achieved low-significance constraints on the amplitude of the Einstein delay and Shapiro delay, in turn yielding constraints on the pulsar mass (Mp=1.26(+0.13/-0.25) Mo), the companion mass (Mc=1.32(+0.25/-0.13) Mo, and the inclination angle (i=57(2) degrees). This system is highly eccentric compared to other Galactic field double neutron stars with similar periods, possibly hinting at a larger-than-usual supernova kick during the formation of the second-born neutron star. The binary will merge within 7.2(2) Gyr due to the emission of gravitational waves. With the improved sensitivity of the MMGPS-L, we updated the Milky Way neutron star merger rate to be 25(+19/-9) Myr1^{-1} within 90% credible intervals, which is lower than previous studies based on known Galactic binaries owing to the lack of further detections despite the highly sensitive nature of the survey. This implies a local cosmic neutron star merger rate of 293(+222/-103} Gpc/yr, consistent with LIGO and Virgo O3 observations. With this, we predict the observation of 10(+8/-4) neutron star merger events during the LIGO-Virgo-KAGRA O4 run. We predict the uncertainties on the component masses and the inclination angle will be reduced to 5x103^{-3} Mo and 0.4 degrees after two decades of timing, and that in at least a decade from now the detection of the shift in Pb and the sky proper motion will serve to make an independent constraint of the distance to the system

    Diet and subsistence in Bronze Age pastoral communities from the southern Russian steppes and the North Caucasus

    Get PDF
    The flanks of the Caucasus Mountains and the steppe landscape to their north offered highly productive grasslands for Bronze Age herders and their flocks of sheep, goat, and cattle. While the archaeological evidence points to a largely pastoral lifestyle, knowledge regarding the general composition of human diets and their variation across landscapes and during the different phases of the Bronze Age is still restricted. Human and animal skeletal remains from the burial mounds that dominate the archaeological landscape and their stable isotope compositions are major sources of dietary information. Here, we present stable carbon and nitrogen isotope data of bone collagen of 105 human and 50 animal individuals from the 5th millennium BC to the Sarmatian period, with a strong focus on the Bronze Age and its cultural units including Maykop, Yamnaya, Novotitorovskaya, North Caucasian, Catacomb, post-Catacomb and late Bronze Age groups. The samples comprise all inhumations with sufficient bone preservation from five burial mound sites and a flat grave cemetery as well as subsamples from three further sites. They represent the Caucasus Mountains in the south, the piedmont zone and Kuban steppe with humid steppe and forest vegetation to its north, and more arid regions in the Caspian steppe. The stable isotope compositions of the bone collagen of humans and animals varied across the study area and reflect regional diversity in environmental conditions and diets. The data agree with meat, milk, and/or dairy products from domesticated herbivores, especially from sheep and goats having contributed substantially to human diets, as it is common for a largely pastoral economy. This observation is also in correspondence with the faunal remains observed in the graves and offerings of animals in the mound shells. In addition, foodstuffs with elevated carbon and nitrogen isotope values, such as meat of unweaned animals, fish, or plants, also contributed to human diets, especially among communities living in the more arid landscapes. The regional distinction of the animal and human data with few outliers points to mobility radii that were largely concentrated within the environmental zones in which the respective sites are located. In general, dietary variation among the cultural entities as well as regarding age, sex and archaeologically indicated social status is only weakly reflected. There is, however, some indication for a dietary shift during the Early Bronze Age Maykop period

    Numerical simulation of the influence of the orifice aperture on the flow around a teeth-shaped obstacle

    Get PDF
    The sound generated during the production of the sibilant [s] results from the impact of a turbulent jet on the incisors. Several geometric characteristics of the oral tract can affect the properties of the flow-induced noise so that the characterization of the influence of different geometric parameters on the acoustic sources properties allows determining control factors of the noise production. In this study, a simplified vocal tract/teeth geometric model is used to numerically investigate the flow around a teeth-shaped obstacle placed in a channel and to analyze the influence of the aperture at the teeth on the spectral properties of the fluctuating pressure force exerted on the surface of the obstacle, which is at the origin of the dipole sound source. The results obtained for Re = 4000 suggest that the aperture of the constriction formed by the teeth modifies the characteristics of the turbulent jet downstream of the teeth. Thus, the variations of the flow due to the modification of the constriction aperture lead to variations of the spectral properties of the sound source even if the levels predicted are lower than during the production of real sibilant fricative

    Mycobacterium leprae diversity and population dynamics in medieval Europe from novel ancient genomes

    Get PDF
    Hansen’s disease (leprosy), widespread in medieval Europe, is today mainly prevalent in tropical and subtropical regions with around 200,000 new cases reported annually. Despite its long history and appearance in historical records, its origins and past dissemination patterns are still widely unknown. Applying ancient DNA approaches to its major causative agent, Mycobacterium leprae, can significantly improve our understanding of the disease’s complex history. Previous studies have identified a high genetic continuity of the pathogen over the last 1500 years and the existence of at least four M. leprae lineages in some parts of Europe since the Early Medieval period

    Perceptions of the appropriate response to norm violation in 57 societies

    Get PDF
    Norm enforcement may be important for resolving conflicts and promoting cooperation. However, little is known about how preferred responses to norm violations vary across cultures and across domains. In a preregistered study of 57 countries (using convenience samples of 22,863 students and non-students), we measured perceptions of the appropriateness of various responses to a violation of a cooperative norm and to atypical social behaviors. Our findings highlight both cultural universals and cultural variation. We find a universal negative relation between appropriateness ratings of norm violations and appropriateness ratings of responses in the form of confrontation, social ostracism and gossip. Moreover, we find the country variation in the appropriateness of sanctions to be consistent across different norm violations but not across different sanctions. Specifically, in those countries where use of physical confrontation and social ostracism is rated as less appropriate, gossip is rated as more appropriate.info:eu-repo/semantics/publishedVersio

    Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers

    Get PDF
    Modern humans have populated Europe for more than 45,000 years1,2. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period3. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe4, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants

    Transcriptional Analysis of Lactobacillus brevis to N-Butanol and Ferulic Acid Stress Responses

    Get PDF
    The presence of anti-microbial phenolic compounds, such as the model compound ferulic acid, in biomass hydrolysates pose significant challenges to the widespread use of biomass in conjunction with whole cell biocatalysis or fermentation. Currently, these inhibitory compounds must be removed through additional downstream processing or sufficiently diluted to create environments suitable for most industrially important microbial strains. Simultaneously, product toxicity must also be overcome to allow for efficient production of next generation biofuels such as n-butanol, isopropanol, and others from these low cost feedstocks.This study explores the high ferulic acid and n-butanol tolerance in Lactobacillus brevis, a lactic acid bacterium often found in fermentation processes, by global transcriptional response analysis. The transcriptional profile of L. brevis reveals that the presence of ferulic acid triggers the expression of currently uncharacterized membrane proteins, possibly in an effort to counteract ferulic acid induced changes in membrane fluidity and ion leakage. In contrast to the ferulic acid stress response, n-butanol challenges to growing cultures primarily induce genes within the fatty acid synthesis pathway and reduced the proportion of 19:1 cyclopropane fatty acid within the L. brevis membrane. Both inhibitors also triggered generalized stress responses. Separate attempts to alter flux through the Escherichia coli fatty acid synthesis by overexpressing acetyl-CoA carboxylase subunits and deleting cyclopropane fatty acid synthase (cfa) both failed to improve n-butanol tolerance in E. coli, indicating that additional components of the stress response are required to confer n-butanol resistance.Several promising routes for understanding both ferulic acid and n-butanol tolerance have been identified from L. brevis gene expression data. These insights may be used to guide further engineering of model industrial organisms to better tolerate both classes of inhibitors to enable facile production of biofuels from lignocellulosic biomass

    Population genomics of post-glacial western Eurasia.

    Get PDF
    Western Eurasia witnessed several large-scale human migrations during the Holocene <sup>1-5</sup> . Here, to investigate the cross-continental effects of these migrations, we shotgun-sequenced 317 genomes-mainly from the Mesolithic and Neolithic periods-from across northern and western Eurasia. These were imputed alongside published data to obtain diploid genotypes from more than 1,600 ancient humans. Our analyses revealed a 'great divide' genomic boundary extending from the Black Sea to the Baltic. Mesolithic hunter-gatherers were highly genetically differentiated east and west of this zone, and the effect of the neolithization was equally disparate. Large-scale ancestry shifts occurred in the west as farming was introduced, including near-total replacement of hunter-gatherers in many areas, whereas no substantial ancestry shifts happened east of the zone during the same period. Similarly, relatedness decreased in the west from the Neolithic transition onwards, whereas, east of the Urals, relatedness remained high until around 4,000 BP, consistent with the persistence of localized groups of hunter-gatherers. The boundary dissolved when Yamnaya-related ancestry spread across western Eurasia around 5,000 BP, resulting in a second major turnover that reached most parts of Europe within a 1,000-year span. The genetic origin and fate of the Yamnaya have remained elusive, but we show that hunter-gatherers from the Middle Don region contributed ancestry to them. Yamnaya groups later admixed with individuals associated with the Globular Amphora culture before expanding into Europe. Similar turnovers occurred in western Siberia, where we report new genomic data from a 'Neolithic steppe' cline spanning the Siberian forest steppe to Lake Baikal. These prehistoric migrations had profound and lasting effects on the genetic diversity of Eurasian populations

    Publisher Correction: Population genomics of post-glacial western Eurasia.

    Get PDF

    Review on catalytic cleavage of C-C inter-unit linkages in lignin model compounds: Towards lignin depolymerisation

    Get PDF
    Lignin depolymerisation has received considerable attention recently due to the pressing need to find sustainable alternatives to fossil fuel feedstock to produce chemicals and fuels. Two types of interunit linkages (C–C and C–O linkages) link several aromatic units in the structure of lignin. Between these two inter-unit linkages, the bond energies of C–C linkages are higher than that of C–O linkages, making them harder to break. However, for an efficient lignin depolymerisation, both types of inter-unit linkages have to be broken. This is more relevant because of the fact that many delignification processes tend to result in the formation of additional C–C inter-unit bonds. Here we review the strategies reported for the cleavage of C–C inter-unit linkages in lignin model compounds and lignin. Although a number of articles are available on the cleavage of C–O inter-unit linkages, reports on the selective cleavage of C–C inter-unit linkages are relatively less. Oxidative cleavage, hydrogenolysis, two-step redox-neutral process, microwave assisted cleavage, biocatalytic and photocatalytic methods have been reported for the breaking of C–C inter-unit linkages in lignin. Here we review all these methods in detail, focused only on the breaking of C–C linkages. The objective of this review is to motivate researchers to design new strategies to break this strong C–C inter-unit bonds to valorise lignins, technical lignins in particular
    corecore