734 research outputs found
The Use of Radiation-Induced Plastic Memory to Develop New Space Erectable Structures
Radiation induced plastic memory in polyethylene and use in space erectable structure
Fabrication of micro-structures for optically driven micromachines using two-photon photopolymerization of UV curing resins
Two-photon photopolymerization of UV curing resins is an attractive method
for the fabrication of microscopic transparent objects with size in the tens of
micrometers range. We have been using this method to produce three-dimensional
structures for optical micromanipulation, in an optical system based on a
femtosecond laser. By carefully adjusting the laser power and the exposure time
we were able to create micro-objects with well-defined 3D features and with
resolution below the diffraction limit of light. We discuss the performance and
capabilities of a microfabrication system, with some examples of its products.Comment: 12 pages, 10 figure
Comparing Laser Diffraction and Optical Microscopy for Characterizing Superabsorbent Polymer Particle Morphology, Size, and Swelling Capacity
In this study, we determined the accuracy and practicality of using optical microscopy (OM) and laser diffraction (LD) to characterize hydrogel particle morphology, size, and swelling capacity (Q). Inverse-suspension-polymerized polyacrylamide particles were used as a model system. OM and LD showed that the average particle diameter varied with the mixing speed during synthesis for the dry (10â120 lm) and hydrated (34â240 lm) particles. The LD volume and number mean diameters showed that a few large particles were responsible for the majority of the water absorption. Excess water present in the gravimetric swelling measurements led to larger Qs (8.2 6 0.37 g/g), whereas the volumetric measurements with OM and LD resulted in reduced capacities (6.5 6 3.8 and 5.7 6 3.9 g/g, respectively). Results from the individual particle swelling measurements with OM (5.2 6 0.66 g/g) statistically confirmed that the volumetric methods resulted in a reduced and more accurate measurement of the Q than the gravimetric method
Adsorption of Multi-block and Random Copolymer on a Solid Surface: Critical Behavior and Phase Diagram
The adsorption of a single multi-block -copolymer on a solid planar
substrate is investigated by means of computer simulations and scaling
analysis. It is shown that the problem can be mapped onto an effective
homopolymer adsorption problem. In particular we discuss how the critical
adsorption energy and the fraction of adsorbed monomers depend on the block
length of sticking monomers , and on the total length of the polymer
chains. Also the adsorption of the random copolymers is considered and found to
be well described within the framework of the annealed approximation. For a
better test of our theoretical prediction, two different Monte Carlo (MC)
simulation methods were employed: a) off-lattice dynamic bead-spring model,
based on the standard Metropolis algorithm (MA), and b) coarse-grained lattice
model using the Pruned-enriched Rosenbluth method (PERM) which enables tests
for very long chains. The findings of both methods are fully consistent and in
good agreement with theoretical predictions.Comment: 27 pages, 12 figure
The Heavy Photon Search beamline and its performance
The Heavy Photon Search (HPS) is an experiment to search for a hidden sector
photon, aka a heavy photon or dark photon, in fixed target electroproduction at
the Thomas Jefferson National Accelerator Facility (JLab). The HPS experiment
searches for the ee decay of the heavy photon with bump hunt and
detached vertex strategies using a compact, large acceptance forward
spectrometer, consisting of a silicon microstrip detector (SVT) for tracking
and vertexing, and a PbWO electromagnetic calorimeter for energy
measurement and fast triggering. To achieve large acceptance and good vertexing
resolution, the first layer of silicon detectors is placed just 10 cm
downstream of the target with the sensor edges only 500 m above and below
the beam. Placing the SVT in such close proximity to the beam puts stringent
requirements on the beam profile and beam position stability. As part of an
approved engineering run, HPS took data in 2015 and 2016 at 1.05 GeV and 2.3
GeV beam energies, respectively. This paper describes the beam line and its
performance during that data taking
Monodisperse Cylindrical Micelles and Block Comicelles of Controlled Length in Aqueous Media
Cylindrical
block copolymer micelles have shown considerable promise
in various fields of biomedical research. However, unlike spherical
micelles and vesicles, control over their dimensions in biologically
relevant solvents has posed a key challenge that potentially limits
in depth studies and their optimization for applications. Here, we
report the preparation of cylindrical micelles of length in the wide
range of 70 nm to 1.10 ÎŒm in aqueous media with narrow length
distributions (length polydispersities <1.10). In our approach,
an amphiphilic linear-brush block copolymer, with high potential for
functionalization, was synthesized based on polyÂ(ferrocenyldimethylsilane)-<i>b</i>-polyÂ(allyl glycidyl ether) (PFS-<i>b</i>-PAGE)
decorated with triethylene glycol (TEG), abbreviated as PFS-<i>b</i>-(PEO-<i>g</i>-TEG). PFS-<i>b</i>-(PEO-<i>g</i>-TEG) cylindrical micelles of controlled length with low
polydispersities were prepared in <i>N</i>,<i>N</i>-dimethylformamide using small seed initiators via living crystallization-driven
self-assembly. Successful dispersion of these micelles into aqueous
media was achieved by dialysis against deionized water. Furthermore,
BâAâB amphiphilic triblock comicelles with PFS-<i>b</i>-polyÂ(2-vinylpyridine) (P2VP) as hydrophobic âBâ
blocks and hydrophilic PFS-<i>b</i>-(PEO-<i>g</i>-TEG) âAâ segments were prepared and their hierarchical
self-assembly in aqueous media studied. It was found that superstructures
formed are dependent on the length of the hydrophobic blocks. Quaternization
of P2VP was shown to cause the disassembly of the superstructures,
resulting in the first examples of water-soluble cylindrical multiblock
comicelles. We also demonstrate the ability of the triblock comicelles
with quaternized terminal segments to complex DNA and, thus, to potentially
function as gene vectors
Observation of the Askaryan Effect: Coherent Microwave Cherenkov Emission from Charge Asymmetry in High Energy Particle Cascades
We present the first direct experimental evidence for the charge excess in
high energy particle showers predicted nearly 40 years ago by Askaryan. We
directed bremsstrahlung photons from picosecond pulses of 28.5 GeV electrons at
the SLAC Final Focus Test Beam facility into a 3.5 ton silica sand target,
producing electromagnetic showers several meters long. A series of antennas
spanning 0.3 to 6 GHz were used to detect strong, sub-nanosecond radio
frequency pulses produced whenever a shower was present. The measured electric
field strengths are consistent with a completely coherent radiation process.
The pulses show 100% linear polarization, consistent with the expectations of
Cherenkov radiation. The field strength versus depth closely follows the
expected particle number density profile of the cascade, consistent with
emission from excess charge distributed along the shower. These measurements
therefore provide strong support for experiments designed to detect high energy
cosmic rays and neutrinos via coherent radio emission from their cascades.Comment: 10 pages, 4 figures. Submitted to Phys. Rev. Let
Supramolecular copolymers: structure and composition revealed by theoretical modeling
Supramolecular copolymers, non-covalent analogues of synthetic copolymers, constitute a new and promising class of polymers. In contrast to their covalent counterparts, the details of their mechanism of formation, as well as the factors determining their composition and length, are still poorly understood. Here, the supramolecular copolymerization between two slightly structurally different benzene-1,3,5-tricarboxamide (BTA) monomers functionalized with either oligodimethylsiloxane (oDMSi) or alkyl side chains is unraveled by combining experimental and theoretical approaches. By applying the âsergeant-and-soldiersâ approach using circular dichroism (CD) experiments, we are able to obtain detailed insights into the structure and composition of these supramolecular copolymers. Moreover, we observe an unexpected chiral induction upon mixing two independently CD-silent solutions of the achiral (soldier) and chiral (sergeant) monomers. We find that the subtle differences in the chemical structure of the two monomers impact their homopolymerization mechanism: whereas alkyl-BTAs cooperatively self-assemble, oDMSi-BTAs self-assemble in an isodesmic manner. The effect of these mechanistic differences in the supramolecular copolymerization process is investigated as a function of the composition of the two monomers and explicitly rationalized by mathematical modeling. The results show that, at low fractions of oDMSi-BTA sergeants (25 mol%), the isodesmic assembly of the increasing amounts of sergeant becomes more dominant, and different species start to coexist in the copolymerization process. The analysis of the experimental data with a newly developed theoretical model allows us to quantify the thermodynamic parameters, the distribution of different species, and the compositions and stack lengths of the formed supramolecular copolymers existing at various feed ratios of the two monomers.This work was financially supported by The Netherlands Organization for Scientific Research (NWO-TOP PUNT Grant 10018944) and the Dutch Ministry of Education, Culture and Science (Gravity Program 024.001.035)
Phosphonic Acid-Functionalized Diblock Copolymer Nano-Objects via Polymerization-Induced Self-Assembly: Synthesis, Characterization, and Occlusion into Calcite Crystals
Dialkylphosphonate-functionalized and phosphonic acid-functionalized macromolecular chain transfer agents (macro-CTAs) were utilized for the reversible additionâfragmentation chain transfer (RAFT) dispersion polymerization of benzyl methacrylate (BzMA) at 20% w/w solids in methanol at 64 °C. Spherical, worm-like and vesicular nano-objects could all be generated through systematic variation of the mean degree of polymerization of the core-forming PBzMA block when using relatively short macro-CTAs. Construction of detailed phase diagrams is essential for the reproducible targeting of pure copolymer morphologies, where these were characterized using transmission electron microscopy (TEM) and dynamic light scattering (DLS). For nano-objects prepared using the phosphonic acid-based macro-CTA, transfer from methanol dispersion to water leads to the development of anionic surface charge as a result of ionization of the stabilizer chains, but this does not adversely affect the copolymer morphology. Given the well-known strong affinity of phosphonic acid for calcium ions, selected nano-objects were evaluated for their in-situ occlusion within growing CaCO3 crystals. Scanning electron microscopy (SEM) studies provide convincing evidence for the occlusion of both worm-like and vesicular phosphonic acid-based nano-objects and hence the production of a series of interesting new organic-inorganic nanocomposites
Mobility of thorium ions in liquid xenon
We present a measurement of the Th ion mobility in LXe at 163.0 K and
0.9 bar. The result obtained, 0.2400.011 (stat) 0.011 (syst)
cm/(kV-s), is compared with a popular model of ion transport.Comment: 6.5 pages,
- âŠ