13,604 research outputs found

    In the Shadow of the Pines

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/1882/thumbnail.jp

    Rho kinase inhibitors Y27632 and H1152 augment neurite extension in the presence of cultured Schwann cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RhoA and Rho kinase inhibitors overcome the inhibition of axonal regeneration posed by central nervous system (CNS) substrates.</p> <p>Methods</p> <p>To investigate if inhibition of the Rho pathway augments the neurite extension that naturally occurs in the peripheral nervous system (PNS) following nerve damage, dorsal root ganglion neurons and Schwann cell co-cultures were incubated with culture medium, C3 fusion toxin, and the Rho kinase (ROCK) inhibitors Y27632 and H1152. The longest neurite per neuron were measured and compared. Incubation with Y27632 and H1152 resulted in significantly longer neurites than controls when the neurons were in contact with Schwann cells. When separated by a porous P.E.T. membrane, only the group incubated with H1152 developed significantly longer neurites. This work demonstrates that Rho kinase inhibition augments neurite elongation in the presence of contact with a PNS-like substrate.</p

    Analogue of the Kubo Formula for Conductivity of Spatially Inhomogeneous Systems and Electric Fields

    Full text link
    The average of densities of currents and charges, induced by a weak electromagnetic field in spatially inhomogeneous are calculated at final temperatures. The Kubo formula for a conductivity tensor is generalized for spatially inhomogeneous systems and fields. The contributions containing electric fields and derivative from fields on coordinates are allocated. The Semiconductor quantum wells, wires and dots may be considered as spatially inhomogeneous systems.Comment: 10 page

    Interaction of strongly correlated electrons and acoustical phonons

    Get PDF
    We investigate the interaction of correlated electrons with acoustical phonons using the extended Hubbard-Holstein model in which both, the electron-phonon interaction and the on-site Coulomb repulsion are considered to be strong. The Lang-Firsov canonical transformation allows to obtain mobile polarons for which a new diagram technique and generalized Wick's theorem is used. This allows to handle the Coulomb repulsion between the electrons emerged into a sea of phonon fields (\textit{phonon clouds}). The physics of emission and absorption of the collective phonon-field mode by the polarons is discussed in detail. Moreover, we have investigated the different behavior of optical and acoustical phonon clouds when propagating through the lattice. In the strong-coupling limit of the electron-phonon interaction, and in the normal as well as in the superconducting phase, chronological thermodynamical averages of products of acoustical phonon-cloud operators can be expressed by one-cloud operator averages. While the normal one-cloud propagator has the form of a Lorentzian, the anomalous one is of Gaussian form and considerably smaller. Therefore, the anomalous electron Green's functions can be considered to be more important than corresponding polarons functions, i.e., pairing of electrons without phonon-clouds is easier to achieve than pairing of polarons with such clouds.Comment: : 28 pages, 9 figures, revtex4. Invited paper for a special issue of Low Temperature Physics dedicated to the 20th anniversary of HTS

    Advanced training model for beating heart coronary artery surgery: the Zurich heart-trainer

    Get PDF
    Objective: Coronary artery surgery with beating heart technique is gaining increasing popularity. However, it is a challenging technique even for well-trained cardiac surgeons. Thus, a training model for beating heart surgery was developed to increase safety and accuracy of this procedure. Methods: The model consists of differentially hardened polyurethane resembling mechanical properties of the human heart. The covering used in this model is a 1:1 replica of the human thoracic wall with optionally embedded skeletal structures. Sternotomy, lateral thoracotomy or trocar placement is possible to access the lungs, the pericardium and the heart with adjacent vessels. Disposable artificial coronaries variable in size, wall quality or wall thickness are embedded in the synthetic myocardium. Two-layer vessels, which can simulate dissection, are available. Bypass conduits utilize the same material. Coronaries/bypasses as well as part of the ascending aorta are water-tight and can be rinsed with saline. Lungs can be inflated. A purpose-built pump induces heart movement with adjustable or randomized stroke volume, heart rate and arrhythmia induction. Results: The model was tested in a recent ‘Wet-Lab' course attended by 30 surgeons. All conventional instruments and stabilizers with standard techniques can be used. Training with beating or non-beating heart was possible. Time needed for an anastomosis was similar to clinical experience. Each artificial tissue showed its individual nature-like qualities. Various degrees of difficulty can be selected, according to stroke volume, heart rate, arrhythmia, vessel size and vessel quality. The model can be quickly and easily set up and is fully reusable. Conclusions: The similarity to human tissue and the easy set-up make this completely artificial model an ideal teaching tool to increase the confidence of cardiac surgeons dealing with beating heart and minimally invasive surger

    The magnetic environment in the central region of nearby galaxies

    Full text link
    The central regions of galaxies harbor some of the most extreme physical phenomena, including dense stellar clusters, non-circular motions of molecular clouds and strong and pervasive magnetic field structures. In particular, radio observations have shown that the central few hundred parsecs of our Galaxy has a striking magnetic field configuration. It is not yet clear whether these magnetic structures are unique to our Milky Way or a common feature of all similar galaxies. Therefore, we report on (a) a new radio polarimetric survey of the central 200 pc of the Galaxy to better characterize the magnetic field structure and (b) a search for large-scale and organized magnetized structure in the nuclear regions of nearby galaxies using data from the Very Large Array (VLA) archive. The high angular resolution of the VLA allows us to study the central 1 kpc of the nearest galaxies to search for magnetized nuclear features similar to what is detected in our own Galactic center. Such magnetic features play a important role in the nuclear regions of galaxies in terms of gas transport and the physical conditions of the interstellar medium in this unusual region of galaxies.Comment: 8 pages; Proceedings for "The Universe under the Microscope" (AHAR 2008), held in Bad Honnef (Germany) in April 2008, to be published in Journal of Physics: Conference Series by Institute of Physics Publishing, R. Schoedel, A. Eckart, S. Pfalzner, and E. Ros (eds.

    The spin-Peierls instability in spin 1/2 XY chain in the non adiabatic limit

    Full text link
    The spin-Peierls instability in spin 1/2 XY chain coupled to dispersionless phonons of frequency ω\omega has been studied in the nonadiabatic limit. We have chosen the Lang-Firsov variational wave function for the phonon subsystem to obtain an effective spin Hamiltonian. The effective spin Hamiltonian is then solved in the framework of mean-field approximation. We observed a dimerized phase when g is less than a critical value and an anti-ferromagnetic phase when it is greater than a critical value . The variation of lattice distortion, dimerized order parameter and energy gap with spin phonon coupling parameter has also been investigated here.Comment: 15 pages (Revtex, including 5 .ps figures); Submitted to PR
    corecore