454 research outputs found

    The RAI travels to Latin America: Measuring regional authority under regime change

    Get PDF
    This paper presents a new dataset on regional authority in 27 Latin American and Caribbean countries for 1950–2010 based on the Regional Authority Index (RAI), which makes it possible to compare regional authority over time and across regions. We explain conceptualization, operationalization, and coding decisions with the aim of making judgments explicit, and therefore open to amendment or refutation. We present substantive observations about the variation across countries and over time and discuss the implications and challenges of expanding the RAI to contexts in which democracy and authoritarianism alternate

    Observations of Seyferts by OSSE and parameters of their X-ray/gamma-ray sources

    Get PDF
    We present a summary of spectra of Seyfert galaxies observed by the OSSE detector aboard Compton Gamma Ray Observatory. We obtain average spectra of Seyferts of type 1 and 2, and find they are well fitted by thermal Comptonization. We present detailed parameter ranges for the plasma temperature and the Compton parameter in the case of spherical and slab geometries. We find both the average and individual OSSE spectra of Seyfert 2s are significantly harder than those of Seyfert 1s, which difference can be due to anisotropy of Compton reflection and/or Thomson-thick absorption.Comment: ApJ, 10 Nov. 2000, in press, 13 page

    Salivary Metabolomic Signatures and Body Mass Index in Italian Adolescents: A Pilot Study

    Get PDF
    Context: Obesity surveillance is scarce in adolescents, and little is known on whether salivary metabolomics data, emerging minimally invasive biomarkers, can characterize metabolic patterns associated with overweight or obesity in adolescents. Objective: This pilot study aims to identify the salivary molecular signatures associated with body mass index (BMI) in Italian adolescents. Methods: Saliva samples and BMI were collected in a subset of n = 74 young adolescents enrolled in the Public Health Impact of Metal Exposure study (2007-2014). A total of 217 untargeted metabolites were identified using liquid chromatography-high resolution mass spectrometry. Robust linear regression was used to cross-sectionally determine associations between metabolomic signatures and sex-specific BMI-for-age z-scores (z-BMI). Results: Nearly 35% of the adolescents (median age: 12 years; 51% females) were either obese or overweight. A higher z-BMI was observed in males compared to females (P = .02). One nucleoside (deoxyadenosine) and 2 lipids (18:0-18:2 phosphatidylcholine and dipalmitoyl-phosphoethanolamine) were negatively related to z-BMI (P < .05), whereas 2 benzenoids (3-hydroxyanthranilic acid and a phthalate metabolite) were positively associated with z-BMI (P < .05). In males, several metabolites including deoxyadenosine, as well as deoxycarnitine, hyodeoxycholic acid, N-methylglutamic acid, bisphenol P, and trigonelline were downregulated, while 3 metabolites (3-hydroxyanthranilic acid, theobromine/theophylline/paraxanthine, and alanine) were upregulated in relation to z-BMI (P < .05). In females, deoxyadenosine and dipalmitoyl-phosphoethanolamine were negatively associated with z-BMI while deoxycarnitine and a phthalate metabolite were positively associated (P < .05). A single energy-related pathway was enriched in the identified associations in females (carnitine synthesis, P = .04). Conclusion: Salivary metabolites involved in nucleotide, lipid, and energy metabolism were primarily altered in relation to BMI in adolescents

    Compressive Sensing of Signals Generated in Plastic Scintillators in a Novel J-PET Instrument

    Full text link
    The J-PET scanner, which allows for single bed imaging of the whole human body, is currently under development at the Jagiellonian University. The dis- cussed detector offers improvement of the Time of Flight (TOF) resolution due to the use of fast plastic scintillators and dedicated electronics allowing for sam- pling in the voltage domain of signals with durations of few nanoseconds. In this paper we show that recovery of the whole signal, based on only a few samples, is possible. In order to do that, we incorporate the training signals into the Tikhonov regularization framework and we perform the Principal Component Analysis decomposition, which is well known for its compaction properties. The method yields a simple closed form analytical solution that does not require iter- ative processing. Moreover, from the Bayes theory the properties of regularized solution, especially its covariance matrix, may be easily derived. This is the key to introduce and prove the formula for calculations of the signal recovery error. In this paper we show that an average recovery error is approximately inversely proportional to the number of acquired samples

    Application of the Compress Sensing Theory for Improvement of the TOF Resolution in a Novel J-PET Instrument

    Get PDF
    Nowadays, in Positron Emission Tomography (PET) systems, a Time of Flight information is used to improve the image reconstruction process. In Time of Flight PET (TOF-PET), fast detectors are able to measure the difference in the arrival time of the two gamma rays, with the precision enabling to shorten significantly a range along the line-of-response (LOR) where the annihilation occurred. In the new concept, called J-PET scanner, gamma rays are detected in plastic scintillators. In a single strip of J-PET system, time values are obtained by probing signals in the amplitude domain. Owing to Compress Sensing theory, information about the shape and amplitude of the signals is recovered. In this paper we demonstrate that based on the acquired signals parameters, a better signal normalization may be provided in order to improve the TOF resolution. The procedure was tested using large sample of data registered by a dedicated detection setup enabling sampling of signals with 50 ps intervals. Experimental setup provided irradiation of a chosen position in the plastic scintillator strip with annihilation gamma quanta

    Novel method for hit-position reconstruction using voltage signals in plastic scintillators and its application to Positron Emission Tomography

    Full text link
    Currently inorganic scintillator detectors are used in all commercial Time of Flight Positron Emission Tomograph (TOF-PET) devices. The J-PET collaboration investigates a possibility of construction of a PET scanner from plastic scintillators which would allow for single bed imaging of the whole human body. This paper describes a novel method of hit-position reconstruction based on sampled signals and an example of an application of the method for a single module with a 30 cm long plastic strip, read out on both ends by Hamamatsu R4998 photomultipliers. The sampling scheme to generate a vector with samples of a PET event waveform with respect to four user-defined amplitudes is introduced. The experimental setup provides irradiation of a chosen position in the plastic scintillator strip with an annihilation gamma quanta of energy 511~keV. The statistical test for a multivariate normal (MVN) distribution of measured vectors at a given position is developed, and it is shown that signals sampled at four thresholds in a voltage domain are approximately normally distributed variables. With the presented method of a vector analysis made out of waveform samples acquired with four thresholds, we obtain a spatial resolution of about 1 cm and a timing resolution of about 80 p
    corecore