577 research outputs found
Peak or sustained antibiotic serum levels for optimal tissue penetration
A comparative study of the levels of netilmicin in bronchial secretions after intermittent and during continuous intravenous injections was performed. During the first 2 h, the areas under the drug concentration curves in the bolus injection experiment were greater in serum and in bronchial secretions (206 and 150% respectively) than those associated with the continuous infusion (P<0.001); however, during the 8 h experimental period, the areas under the curves were similar in serum and bronchial secretions with the two modes of administration. The percentages of penetration of netilmicin from the blood to the bronchial lumen were also similar with the two modes of administration (19%). After intramuscular administration of amikacin (7.5 and 12.5 mg/kg twice daily), the peak bronchial secretion levels of the drug were 4.4 and 10.1 mg/l respectively and the trough levels about 1 mg/l. During continuous iv injection of amikacin (7-12 mg/kg/8 h), the drug level in the bronchial secretions was only 2.0 mg/l and the percentage of penetration was 14.9% adequate anti-Pseudomonas activity in bronchial secretions was rarely achieved. It is therefore suggested that intermittent injections of aminoglycosides can result in at least transitory higher bronchial secretion levels than continuous injection: the intermittent schedule of antibiotic administration could therefore be recommended in the treatment of bronchopulmonary infections since it has been suggested that the concentration of antibiotic in bronchial secretions could be important in the outcome of these infection
Chemical Range of Stability for Self-Dusting Ladle Furnace Slags and Destabilizing Effect of Sulfur
Ladle furnace slags are characterized by volumetric expansions associated with the transition of dicalcium silicate (C2S) from β to γ phase, which generates fine dust during cooling, causing handling and storage issues that further reduce their recycling opportunities. The present work focuses on the effect of slag basicity on dusting and the role of sulfur on slag stability. Seven synthetic ladle slag precursors were made by mixing lime, magnesia, quartz and alumina in different proportions to match effective industrial compositions, increasing the binary basicity and keeping the ternary and quaternary indexes unchanged. Samples were heated to 1500 °C for 15 min and monitored during air cooling (< 5 °C/s) through thermocouples and camera to characterize the behavior, temperature, and time interval of dusting. The cooled samples were characterized chemically, mineralogically and morphologically. Starting from the chemistry of a self-stabilized slag, five additional slag precursors, characterized by increasing amounts of S, were created and analyzed using the same procedures. Experimental evidence showed the presence of three different dusting behaviors (stable, partial and complete) and stabilization of the slag once an optical basicity of 0.748 or higher was reached. In addition, mayenite was identified as the main phase capable of suppressing the β to γ transition by exerting hydrostatic pressure on C2S. Finally, although S can stabilize the β phase when dissolved in it, after saturation it precipitates as CaS, which can react with mayenite, locally decreasing the optical basicity and allowing dusting. Graphical Abstract: [Figure not available: see fulltext.]
Individual dosage of digoxin in patients with heart failure
Backgroud: After the publication of DIG trial, the therapeutic target of serum digoxin concentration (SDC) for the treatment of heart failure (HF) has been lowered (0.40-1.00 ng/ml). However, the majority of equations to calculate digoxin dosages were developed for higher SDCs. Recently, a new equation was validated in Asian population for low SDCs by Konishi et al., but results in Caucasians are unknown. Aim: This study was aimed to test the Konishi equation in Caucasians specifically targeting low SDCs. Furthermore, the Konishi equation was compared with other frequently used equations. Design: This was a prospective, multicenter study. Methods: Clinically indicated digoxin was given in 40 HF patients. The dosage was calculated with the Konishi equation. The SDC was measured at 1 and 6 months after starting digoxin. Adherence to digoxin was monitored with a specific questionnaire. Results: After exclusion of patients admitting poor adherence, we found a reasonable correlation between predicted and measured SDC (r = 0.48; P < 0.01) by the Konishi equation. Excluding patients with poor adherence and relevant worsening of renal function, the measured SDC (n = 54 measurements) was within the pre-defined therapeutic range in 95% of the cases. The mean, maximal and minimal measured SDC were 0.69 ± 0.19, 1.00 and 0.32 ng/ml, respectively. The correlation was weaker for the Jelliffe, the Koup and Jusko, and the Bauman equations. Conclusions: This study supports the clinical validity of the Konishi equation for calculating individual digoxin dosage in Caucasians, targeting SDCs according to current HF guideline
A Simplified Approach Based on Cellular Automata for Describing Direct Reduced Iron Production in Different Reducing Conditions
A quick computation approach based on cellular automata is developed and implemented to describe the reduction of iron ore pellets by a mixture of reducing agents featured by different H2/CO ratios. The evolution of oxygen concentration inside the pellet is followed from the beginning to the end of contact between reducing agent and pellet. The variation of thermal state of pellets and gas mixture is computed based on their initial temperature, considering the heat involved and the convective heat exchange between pellet and gas mixture. The use of cellular automata and finite-difference method to solve the diffusion equation point out the absence of any diffusion coefficient value, allowing to make the model fit the experimental trial, because the problem is that it is not ruled just by diffusion but also by the concentration variation of reducing agent inside the pellet due to porosity increasing during reduction. The updating of the reducing agents concentration implies a sharp decrease of oxygen concentration that the cellular automata model considers. The developed model is able to provide the in-line control of reduction process and could be used to adjust the chemical concentration and temperature of injected reducing agents
Effect of cold drawing reduction rate on edge-to-center-characterized microstructure and orientation alongside residual stresses in conjunction with magnetic properties of low-carbon high-alloy ferromagnetic steel
In the current research, the effect of cold drawing reduction rate (CDRR) of 15% and 45% and the required subsequent isothermal static recrystallization annealing heat treatment (ISRAHT) on the microstructures, textures, residual stresses, and magnetic properties of ferritic/ferromagnetic stainless steel (FSS), EN 1.4106, are investigated by a series of experimental analyses. The study is carried out by the theoretical well-known model of Johnson-Mehl-Avrami-Kolmogorov (JMAK) in conjunction with aforesaid properties. According to the results, by increasing the CDRR, the recrystallization fractions (RF) become faster in accordance with the JMAK theory. Such an increment also affects more fragmented and elongated grains, which leads to provide smaller grains in size. However, by the effect of slow cooling process (SCP), the grain growth is another noticeable part of study. Likewise, the effects of CDRR and the subsequent ISRAHT find to be beneficial for the evolution of microstructures, textures, and relief of residual stresses, and better performance of magnetic behavior. For instance, higher relative magnetic permeabilities approximately above 1000 causes to reach residual stresses closer to zero. The cold-drawn FSSs are consisted of the α-fibre texture, which is close to {2 2 3} 〈1 1 0〉 and {1 1 1} 〈1 1 0〉, with higher intensity while by gradual higher recrystallization, the orientation tendency to {1 1 1} 〈0 1 1〉 of γ-fibre are formed following to the more distributed texture with lesser intensity. The findings display that while the recrystallization process addresses the formation of new grains, resulting in the more equiaxed grains, more well-aligned textures are also achieved in respect to the lower misorientation uniformity density and even with more distributed clusters
Phytochemical profile and biological activities of crude and purified Leonurus cardiaca extracts
Leonurus cardiaca L. (Lamiaceae) is a perennial herb distributed in Asia and Southeastern Europe and has been used in traditional medicine since antiquity for its role against cardiac and gynecological disorders. The polar extracts obtained from L. cardiaca aerial parts contain several compounds among which alkaloids, iridoids, labdane diterpenes, and phenylethanoid glycosides play a major role in conferring protection against the aforementioned diseases. On the other hand, the antioxidant activities and the enzyme inhibitory properties of these extracts have not yet been deeply studied. On the above, in the present study, crude and purified extracts were prepared from the aerial parts of L. cardiaca and have been chemically characterized by spectrophotometric assays and HPLC-DAD-MS analyses. Notably, the content of twelve secondary metabolites, namely phenolic acids (chlorogenic, caffeic, caffeoylmalic and trans-ferulic acids), flavonoids (rutin and quercetin), phenylethanoid glycosides (verbascoside and lavandulifolioside), guanidine pseudoalkaloids (leonurine), iridoids (harpagide), diterpenes (forskolin), and triterpenes (ursolic acid), has been determined. Furthermore, the extracts were tested for their antioxidant capabilities (phosphomolybdenum, DPPH, ABTS, FRAP, CUPRAC, and ferrous chelating assays) and enzyme inhibitory properties against cholinesterase, tyrosinase, amylase, and glucosidase. The purified extracts contained higher phytochemical content than the crude ones, with caffeoylmalic acid and verbascoside as the most abundant compounds. A linear correlation between total phenolics, radical scavenging activity, and reducing power of extracts has been found. Notably, quercetin, caffeic acid, lavandulifolioside, verbascoside, chlorogenic acid, rutin, and ursolic acid influenced the main variations in the bioactivities found in L. cardiaca extracts. Our findings provide further insights into the chemico-biological traits of L. cardiaca and a scientific basis for the development of nutraceuticals and food supplements
Mechanical-metallurgical-corrosion behavior of Cr-Si-S-C ferritic/ferromagnetic stainless steel, known as AISI 430F, before and after isothermal recrystallization annealing
The research investigates the mechanical and corrosion behavior of Cr-Si-S-C ferritic stainless steel (FSS), known as EN1.4105, which is equivalent to AISI430F. The static isothermal recrystallization annealing is applied to the cold-drawn (CD) materials with two different reduction rates (RRs) of 20 and 35%, under various conditions of soaking temperature and incubation time, which provide 42 unique specimens. The microstructures of CD and annealed materials are characterized by using the electron backscatter diffraction method. X-Ray diffraction analysis alongside scanning electron microscopy linked with energy-dispersive X-ray spectroscopy are also employed to scrutinize the precipitation of any secondary phases, morphologies, and the related chemical compositions. Two different corrosive chlorinated and acidic electrolyte solutions are used for the potentiostatic-based corrosion tests to investigate the passivation kinetics. The results show that the higher RR, which provides faster recrystallization, results in a higher scale of non-hardenable materials. In addition, the effects of RR and annealing conditions are found to have an impact on the corrosion resistance. Moreover, the material exhibits varied behavior in terms of both passivation layer formation as the immersion in the sulfuric acid electrolyte solution (SAES) and active electrochemical behavior immersing in sodium chloride electrolyte solution (SCES). However, this material shows lower corrosion current density and higher corrosion potential in the SCES compared to the SAES medium. The comprehensive findings underscore the intricate relationship between reduction rates, annealing conditions, microstructural evolution, and corrosion behavior in this FSS. The observed trends provide valuable insights for optimizing material performance and corrosion resistance in practical applications. Graphical abstract: [Figure not available: see fulltext.]
Antioxidant and enzyme inhibitory properties of the polyphenolic-rich extract from an ancient apple variety of central Italy (Mela Rosa dei Monti Sibillini)
This study was undertaken to evaluate the nutraceutical potential of the Mela Rosa dei Monti Sibillini (MR), an ancient apple variety of the Sibillini Mountains, central Italy. The chemical profile of the apple''s polyphenolic-rich extract (MRE) obtained from first-and second-choice samples using the Amberlite® XAD7HP resin was analyzed by High Performance Liquid Chromatography with Diode-Array and Mass spectrometry (HPLC-DAD-MS) and 21 phytochemicals were quali–quantitatively determined. For comparative purposes, the polyphenol-rich extract of Annurca (ANE), a southern Italian variety, was analyzed. The antioxidant capacity of MREs was evaluated by Folin–Ciocalteu, 1, 1-diphenyl-2-picrylhydrazyl (DPPH), and 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays. The inhibitory capacity of MREs for the enzymes a-glucosidase, lipase, monoamine oxidase A, tyrosinase, and acetylcholinesterase was also determined. The MREs showed higher polyphenolic and triterpene profiles than the ANE. Their radical scavenging activity was higher than that of ANE and comparable to the reference trolox. The MRE from the second-choice apples displayed higher contents of the 21 phytochemicals investigated. Either MRE from second-choice or first-choice samples showed enzymatic inhibition with IC50 values higher than those of reference inhibitors but worthy of nutraceutical consideration. Taken together, these results show the potential of MRE as a source of bioactive compounds to be used for pharmaceutical, nutraceutical, and cosmeceutical applications has been confirmed
Assessing Sleep Habits in Italian Community-Dwelling Adolescents: Psychometric Properties of the School Sleep Habits Survey Scales
Background. In the field of adolescent sleep research, different sleep surveys have been implemented; however, psychometric properties of these instruments have been investigated only minimally. Methods. In order to assess the psychometric properties of the Sleep-Wake Problems Behaviour Scale (SWP), the Sleepiness Scale (SLS), and the Morningness/Eveningness Questionnaire (ME), a moderately large sample of community-dwelling Italian adolescents (N = 778; 59.8% female; mean age = 15.77 years) was administered the Italian translation of the School Sleep Habits Survey. Results. Internal consistency estimates values were satisfactory for all measures; dimensionality analyses suggested a unidimensional structure for SWP, SLS and ME, respectively. Goodness-of-fit statistics for the one-factor model of the SLS, SWP, and ME scale items were adequate for all measures. Non -redundant taxometric analysis results consistently suggested a dimensional latent structure for the SLS, SWP, and ME, respectively. Conclusion. Our findings supported the use of the SLS, SWP, and ME total scores as measures of sleepiness, sleep-wake problem, and morningness/eveningness, at least among Italian community -dwelling adolescents, and encourage practitioners to rely on the conventional percentiles in order to interpret the SLS, SWP, and ME total scores
- …